
Research Statement | Laurent Bindschaedler
Building the next generation of massive-scale data management systems at the

intersection of operating systems, databases, and machine learning.

The demand for large-scale data-intensive computing has exploded over the past decade, triggered by new applications
ranging from retail business intelligence to Internet-scale services such as Facebook and Google and the steadfast
development of real-time analytics and machine learning techniques. Unfortunately, these advances have placed
incredible strain on existing systems that must now face an ever-growing list of requirements and challenges. Datasets
and workloads exhibit skew, and machines are heterogeneous, requiring reliable solutions to mitigate load imbalance
and maximize parallelism in the presence of stragglers. More and more users need interactive applications with
real-time insights. Workloads vary, and datasets keep changing in hard-to-predict ways. Algorithms and data models
are constantly updated to meet new business objectives, and software ages, requiring frequent maintenance. As a
result, even small organizations nowadays employ dedicated teams and typically spend a large fraction of their IT
budget for the sole purpose of data management and analysis.
My research addresses core systems problems in large-scale, distributed data processing. My dissertation work at
EPFL LABOS tackled the load imbalance problem, where some machines take longer than others to complete their
assigned work due to skew and resource contention. Load imbalance is the bane of distributed systems as it limits
the achievable parallelism. I proposed a new software architecture that mitigates load imbalance and allows these
systems to maximize resource utilization and parallelism. I successfully used this architecture in several application
areas ranging from data analytics to transactions in distributed key-value stores, which, unlike data analytics, are
generally user-facing and require low tail latency in addition to high throughput. More recently, I explored real-time
graph pattern mining in the presence of high-throughput streams of updates. Since real-world graphs are large and
pattern mining is costly, I developed algorithms and systems techniques to efficiently recompute the results depending
on changes in the input graph and improve performance by orders of magnitude. Finally, my postdoctoral work at
MIT CSAIL focused on "learned" systems that automatically synthesize components optimized to a specific problem
instance using machine learning techniques, thereby enabling the creation of bespoke data analytics systems without
expensive and frequent manual tuning.
My research is experimental: it involves building systems and evaluating them. I draw much inspiration from industry,
talks, meetups, personal interaction with other researchers, and social media. Most of my research so far has focused
on challenges that real systems face, directly gathered from the research community and practitioners. The industry
experience that I acquired before my graduate studies, mainly through my startup, also weighs heavily in my approach
to problem selection. I take a principled, systems-oriented approach to understanding and solving problems: measuring
and understanding limitations of existing systems, building quick prototypes to validate observations, and finally
designing new abstractions to generalize the solution. I am also a firm believer in open-source and open research and
make all my research artifacts readily available to researchers and practitioners, particularly all source code1. Finally,
I aim to make scientific research and contributions more accessible to the general public, which I have done so far
through blog posts2 and science communication movies3.
The rest of statement describes the three main projects I worked on so far and outlines my future research plans.

Mitigating Load Imbalance in Cluster Applications
Load imbalance in distributed applications refers to situations where different machines take different amounts of
time to finish their assigned tasks, wasting resources and limiting parallelism as the other machines remain idle. Load
imbalance takes various forms and has many possible causes, including skewed data partitioning, variance in the
amount of generated intermediate state, data-dependent processing times or filtering, irregular memory accesses,
hardware heterogeneity or failures, and interference from background tasks. Therefore, improving load balance is
crucial for application developers and cluster operators as more balanced systems generally benefit from higher
performance, faster job completion times, and better overall resource utilization.
My thesis proposed Scatter computing, a novel architecture for distributed data management and analytics systems
that mitigates the performance impact of load imbalance [1]. Intuitively, addressing load imbalance requires decoupling
tasks from the machines processing them, allowing the system to pool resources and respond to changing load

1https://github.com/bindscha
2https://binds.ch/blog
3https://www.imdb.com/name/nm9978952

1/5

https://github.com/bindscha
https://binds.ch/blog
https://www.imdb.com/name/nm9978952


conditions. The Scatter architecture entails rethinking distributed storage abstractions to avoid storage hotspots and
designing coordination-avoidance techniques to enable multiple machines to share the work of processing a single task
with low synchronization overhead. As a result, Scatter systems are highly resilient to imbalanced situations and often
perform better than traditional systems in uniform cases.
I used the Scatter architecture to address load balance in a diverse set of applications, including graph analytics,
general-purpose analytics, distributed databases, and machine learning, as described in the following sections.

Scale-out Graph Processing from Secondary Storage [Paper] [Slides] [Video] [Code]. . . . . . . . . . . . . . . . .

Problem The availability of graph-structured data in domains ranging from social networks to national security has
created renewed interest in designing systems to mine valuable information from such graphs. A serious impediment
to this effort is that real-world graphs have skewed vertex degree distributions, and many graph algorithms exhibit
irregular access patterns, making it hard to partition data and work. Moreover, the fast growth of graphs exacerbates
these difficulties as datasets may not fit in the aggregate memory of all machines in the system.
Solution and Impact I designed Chaos, a scale-out graph processing system for secondary storage that enables
analytics on very large graphs with trillions of edges [7]. Following the Scatter architecture principles, Chaos does
away with elaborate partitioning schemes and instead spreads the data for each partition uniformly at random across
all machines. We achieve high performance and load balance by leveraging this uniform data placement and a
work-stealing strategy that allows multiple machines to process a single partition. As a result, Chaos is faster than
competing systems by over an order of magnitude on many graph workloads and datasets. Chaos also pushed the limit
of the graph size that can be processed in a cluster of commodity servers by analyzing the connectivity of a graph with
over 250 trillion edges on 20 machines in a little over 10 hours, a feat previously only achieved by supercomputers. Five
years later, Chaos still holds the 5th position in the Graph500 ranking of the largest graphs processed by computer.

Taming Skew in Large Scale Analytics [Paper] [Slides] [Video] [Code]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Problem Application runtimes in distributed data analytics frameworks such as Apache Hadoop and Spark are often
unpredictable and underperforming on many input datasets and deployments due to, e.g., data and compute skew,
slow or faulty machines, cluster heterogeneity. This load imbalance introduces stragglers that cause other machines
to sit idle, degrading performance for the entire parallel job. The underlying cause for these issues is static work
partitioning, i.e., creating fixed-size tasks that cannot be dynamically broken down. Since these systems inherently
require that a single worker process each task, they have little recourse but wait for stragglers.
Solution and Impact I built Hurricane, a high-performance general-purpose analytics system inspired by the Scatter
architecture that generalizes the work-stealing strategy of Chaos to design an adaptive task partitioning scheme
that achieves fast execution times and high cluster utilization [5]. Hurricane introduced a new "data bag" storage
abstraction and a task cloning strategy that allows workers to share a task and automatically adapts parallelism at
runtime. Therefore, Hurricane provides orders-of-magnitude performance improvements in skewed workloads without
introducing performance degradation in uniform workloads and datasets. After the paper’s publication, I worked with
a team of students from the University of Toronto to implement a fully productized open-source version of Hurricane.

Disaggregation for Distributed LSM-based Databases [Paper] [Slides] [Video] [Code]. . . . . . . . . . . . . . .

Problem Distributed databases that use Log-Structured Merge-Tree (LSM) storage engines such as RocksDB often
suffer from unpredictable performance and low utilization due to skew and background operations. Skew causes
CPU and I/O imbalance, which degrades overall throughput and response time. Current LSM-based databases
address skew by resharding data across machines. However, this operation is expensive because it involves bulk data
migration, which affects throughput and response time for users. Similarly, background operations such as flushing
and compaction can cause significant I/O and CPU bursts, leading to severe latency spikes, especially for queries
spanning multiple machines such as range queries or transactions. These problems are hard to address in existing
systems because the storage engines operate independently of each other and thus are unaware of resource usage and
background operations on different machines.
Solution and Impact I designed Hailstorm, an LSM-optimized distributed file system that runs transparently below
database deployments and reduces storage contention while providing cluster awareness to LSM storage engines [2].
Hailstorm automatically rebalances data from each storage engine across machines, reducing storage contention
and enabling overloaded machines to offload background tasks. The Hailstorm design demonstrates the benefits of
my Scatter architecture in user-facing systems. Using Hailstorm, I doubled the throughput of the widely popular
MongoDB database in write-intensive workloads and multiplied scan throughput by over 20×. Hailstorm also achieves
over 2× faster throughput for PingCAP’s TiDB on industry-standard benchmarks TPC-C and TPC-E.

Alleviating Degradation with Non-IID Data in Machine Learning (Under Submission). . . .

Problem Stochastic Gradient Descent (SGD) is a popular optimization algorithm that is used by a variety of machine
learning applications due to its fast learning rate and small memory footprint. However, SGD is notoriously hard to
parallelize in traditional MapReduce environments due to its sequential nature and high communication overheads.

2/5

https://binds.ch/wp-content/uploads/2019/09/chaos2015.pdf
https://binds.ch/wp-content/uploads/2019/09/chaos2015_slides.pdf
https://www.youtube-nocookie.com/embed/37F5tbrFqJQ?list=PLn0nrSd4xjjZKGRyWz0be6a1513z7L6hM
https://github.com/bindscha/chaos
https://binds.ch/wp-content/uploads/2019/09/hurricane2018.pdf
https://binds.ch/wp-content/uploads/2019/09/hurricane2018_slides.pdf
https://www.youtube-nocookie.com/embed/VgP3FXlMPJQ?start=1452
https://github.com/bindscha/hurricane
https://binds.ch/wp-content/uploads/2020/01/hailstorm2020.pdf
https://binds.ch/wp-content/uploads/2020/03/hailstorm2020_slides.pdf
https://www.youtube-nocookie.com/embed/7-X9cXdNA1g
https://github.com/bindscha/hailstorm


Moreover, most parallel implementations of SGD, especially Apache Spark and Parameter Server, assume independent
identically distributed data (IID) across partitions. Unfortunately, this assumption does not always hold in practice,
especially in the presence of skewed samples or when the partitioning across workers itself exhibits skew. In such cases,
the SGD algorithm may suffer from significant performance degradation or fail to converge.
Solution and Impact I built Snowball, a distributed load-balanced implementation of SGD. Snowball supports
asynchronous gradient updates through a distributed key-value store and uses a data bag abstraction to allow parallel
workers to sample from the entire dataset without partitioning it, reducing the impact of skew. Snowball leverages the
Scatter architecture to mitigate a different type of skew in a seemingly perfectly load-balanced situation: all workers
always perform exactly the same amount of work, but some workers perform unnecessary or counterproductive work.
As a result, Snowball achieves high compute and storage utilization on all machines in the cluster while ensuring faster
convergence even in the presence of significant skew. Snowball’s shared data bag design also dampens the effects of
asynchronous weight updates that often impact Parameter Server implementations.

Mining Graph Patterns in Real-Time [Paper] [Slides] [Video] [Code]

Extracting insight from streams of data is becoming a must-have feature in many systems that support business
decisions. Indeed, periodic recomputation on snapshots of the data is wasteful and often too slow to support interactive
data analysis. I explored real-time analytics in the context of graphs.
Problem: Graph pattern mining, i.e., finding instances of interesting patterns (matches) in a graph dataset, has
wide-ranging applications in social networks, chemistry, credit card fraud detection, and semantic web. Since graph
mining applications can easily take hours to run, even on modest-sized graphs, it is desirable to incrementally maintain
the set of all matches as the graph is updated instead of recomputing everything from scratch upon receiving updates.
Mining dynamic graphs introduces a new set of challenges. First, new algorithms are necessary to ensure correctness
under updates and not miss any matches or produce duplicates. Second, a different software architecture is required
to support high-throughput streams with thousands to millions of updates per second while maintaining mining results
in real-time. In particular, this architecture must assign updates to workers in a balanced fashion while minimizing
data transfer and synchronization across workers at scale.
Solution and Impact I designed Tesseract, a distributed graph mining system that automatically executes any existing
static algorithm in dynamic graphs [4]. Tesseract introduces a novel change detection algorithm that efficiently
determines the exact modifications for each update. Moreover, by favoring task parallelism over data parallelism,
Tesseract can decompose a stream of graph updates into per-update mining tasks and dynamically assign these
tasks to a set of distributed workers. Tesseract supports millions of updates per second with low latency and is
several orders-of-magnitude faster than periodic recomputation on snapshots. Finally, Tesseract outperforms static
mining systems on the entire graph, despite the overheads of supporting graph updates, thanks to its low memory
requirements, efficient storage, and communication.

Benchmarking "Learned" Systems [Paper] [Slides] [Video]

The use of machine learning to tune data management systems or synthesize components tailored to a specific
problem instance has recently become a popular research direction. The promise of learned systems is their ability
to automatically adapt to new workloads, data, or hardware without time-consuming tuning by humans, thereby
dramatically reducing the cost and accessibility of data analytics. During my postdoc at MIT, I set out to understand
the characteristics of these new systems and propose some new approaches to analyze and evaluate them.
Problem: Although learned systems and components have shown orders-of-magnitude performance improvements
under laboratory conditions, it remains largely unclear how these numbers will hold up in more realistic production
environments. In particular, traditional benchmarks such as TPC or YCSB that evaluate performance under a stable
workload and data distribution are insufficient to characterize these systems due to the latter’s ability to overfit to the
benchmark. As a result, companies are often reluctant to incorporate these techniques in mainstream systems due to
a lack of evidence of how they would perform under varying conditions.
Solution and Impact: I have presented several ideas for designing new benchmarks that are better suited to evaluate
learned systems [3]. New benchmarks should abstain from using fixed workloads and data distributions as their
characteristics are easy to learn. Similarly, they should strive to measure adaptability through descriptive statistics and
outliers rather than average metrics that "hide" too much information. I also proposed techniques and metrics to
incorporate model training and cost savings into benchmark results, two key characteristics that can no longer be
ignored in learned systems. We are currently collaborating with Microsoft Research and other researchers on this
project, and I have implemented some of these ideas in a benchmark prototype.

3/5

https://binds.ch/wp-content/uploads/2021/04/tesseract2021.pdf
https://binds.ch/wp-content/uploads/2021/05/tesseract2021_slides.pdf
https://www.youtube-nocookie.com/embed/C8XdmSTvXHM
https://github.com/bindscha/tesseract
https://binds.ch/wp-content/uploads/2021/03/learned-benchmark2021.pdf
https://binds.ch/wp-content/uploads/2021/05/learned-benchmark2021_slides.pdf
https://www.youtube-nocookie.com/embed/sgNcfAG71tM


Future Work: Next Generation Data Management Systems
Today’s data management and analytics systems are plagued by problems such as stragglers, frequent updates to
data, changing workloads, high costs of maintenance, and lack of flexibility. Attempts to address these limitations
have led researchers and practitioners to design and deploy many systems optimized for various requirements. But,
unfortunately, these systems are highly brittle: they cannot generalize to different applications, only work in relatively
static workload conditions and execution contexts, and rarely support live updates.
How should we build the next generation of large-scale data management systems at the confluence of real-time
analytics and learned systems? Moreover, how can we guarantee good performance for these new systems in unfavorable
conditions, e.g., skew or resource contention? As a new faculty member, I plan to explore every aspect of this
problem and provide the necessary building blocks for future data management systems. I want to design general
systems that just work without extensive manual tuning. Such systems would unify different paradigms in a
single system, efficiently support updates, and remain highly scalable and predictable under changes. At a high level,
this line of research first entails understanding and characterizing the real-world conditions (data, workload, hardware)
in which these systems are expected to run. Second, I will leverage machine learning techniques to design systems
and components that can self-tailor to a specific problem instance without manual intervention. Finally, I will apply
algorithmic and systems techniques to ensure generality, reliability, and predictability for these systems.
Below is a short description of two concrete research projects I plan to pursue. In the short term, I plan to investigate
self-tailoring storage systems that can adapt to changes in data, workload, and hardware and automatically reconfigure
themselves to meet application requirements. There are currently significant open challenges in this area, particularly
in data layout, partitioning, caching, indexing, maximizing parallelism, and supporting updates efficiently. I also intend
to expand my research to entire self-optimizing applications in distributed real-time analytics, graph processing, and
machine learning applications. The wide acceptance of such applications among practitioners will largely depend on
their reliability and autonomy.

Workload-Driven Database Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Current databases generally rely on designers to define the storage layout and partitioning of each table. Unfortunately,
the exact workload for a database is hardly ever known ahead of time, and production workloads evolve, resulting
in database designers often selecting "safe" layout defaults, such as clustered primary key. I plan to analyze and
characterize database workloads to collect high-level statistics from production environments. I will then identify
important signals and patterns in these high-level statistics to build a storage layout advisor to select the best-suited
layout for a specific workload. A key challenge for this system will be minimizing storage reconfiguration overhead as
the workload changes and data is updated. I am in the process of validating the basic idea using production workloads
from Microsoft Research during my postdoctoral research and hope to cross-validate these results with more industrial
partners soon. Eventually, I want to design a self-tailoring database storage engine that can optimize I/O performance
through partial materialization, caching, and replication.

Unified Bespoke Graph Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Efficiently executing different graph workloads within the same system is challenging as graph applications exhibit
widely varying characteristics. For example, analytics and graph mining applications rely heavily on sorted adjacency
lists that do not play well with graph queries and transactions. Graphs are also notoriously hard to partition across
machines. As a result, most graph processing systems target specific workloads and use specialized data structures,
requiring costly extract-transform-load and partitioning upon updates or execution of a different application. It is
not uncommon for these pre-processing steps to take longer than the actual computation [6]. I will build a graph
processing system that can efficiently execute different applications by automatically fine-tuning configuration and
synthesizing optimized components. Besides, graphs intrinsically contain locality information, enabling the design
of workload-driven caching strategies across the storage hierarchy or customizing the type of traversal technique
(breadth-first or depth-first) based on the specific algorithm and characteristics of the graph. Similarly, other aspects
and components of graph processing systems are amenable to runtime optimization, e.g., type of parallelism used
(data vs. task), scheduling and message passing (vertex relabeling, high-degree vertex prioritization, asynchronous vs.
synchronous computation), or aggregation of results. A key challenge for this line of research will be to identify which
components to target for maximum effectiveness. Another challenge is designing APIs to capture the potential for
performance acceleration through machine learning techniques. Finally, certain components will likely need to be
co-designed to avoid interference. As part of this project, I will also work on mining anomalies and gathering insights
from streaming graph data. Fast anomaly detection is essential for people and organizations that rely on data to
make decisions and has many applications, e.g., understanding/stopping the spread of "fake" news through social
media and finding causes of failures or performance bugs in large networks and infrastructure.

4/5



Bibliography

[1] Laurent Bindschaedler. 2020. An Architecture for Load Balance in Computer Cluster Applications. Technical
Report. EPFL.

[2] Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. 2020. Hailstorm: Disaggregated Compute and Storage
for Distributed LSM-based Databases. In Proceedings of the 25th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM.

[3] Laurent Bindschaedler, Andreas Kipf, Tim Kraska, Ryan Marcus, and Umar Farooq Minhas. 2021. Towards a
Benchmark for Learned Systems. In 37th IEEE International Conference on Data Engineering Workshops, ICDE
Workshops 2021, Chania, Greece, April 19-22, 2021. IEEE, 127–133. https://doi.org/10.1109/ICDEW53142.
2021.00029

[4] Laurent Bindschaedler, Jasmina Malicevic, Baptiste Lepers, Ashvin Goel, and Willy Zwaenepoel. 2021. Tesseract:
Distributed, General Graph Pattern Mining on Evolving Graphs. In Proceedings of the 16th EuroSys Conference
(EuroSys ’21). ACM.

[5] Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper, Ashvin Goel, and Willy Zwaenepoel. 2018. Rock You
Like a Hurricane: Taming Skew in Large Scale Analytics. In Proceedings of the Thirteenth EuroSys Conference.
ACM, 20.

[6] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything you always wanted to know
about multicore graph processing but were afraid to ask. In 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17). 631–643.

[7] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel. 2015. Chaos: Scale-out Graph
Processing from Secondary Storage. In Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 410–424.

5/5

https://doi.org/10.1109/ICDEW53142.2021.00029
https://doi.org/10.1109/ICDEW53142.2021.00029

	Mitigating Load Imbalance in Cluster Applications
	Scale-out Graph Processing from Secondary Storage  [Paper] [Slides] [Video] [Code]
	Taming Skew in Large Scale Analytics [Paper] [Slides] [Video] [Code]
	Disaggregation for Distributed LSM-based Databases  [Paper] [Slides] [Video] [Code]
	Alleviating Degradation with Non-IID Data in Machine Learning (Under Submission)

	Mining Graph Patterns in Real-Time [Paper] [Slides] [Video] [Code]
	Benchmarking "Learned" Systems [Paper] [Slides] [Video]
	Future Work: Next Generation Data Management Systems
	Workload-Driven Database Storage
	Unified Bespoke Graph Processing

	Bibliography

