

Making Mobile Augmented Reality A Reality

Abstract

Recent advances in mobile device technology have

freed augmented reality (AR) applications from the

constraints of desktops, laptops and head-mounted

displays. But they are met with a lack of guidelines on

the design and user interactions of mobile device-based

AR systems. The situation for developers is further

exacerbated by closed-license environments and

inflexible solutions. We provide an overview of the

design of AR applications on handheld devices, the

necessary building blocks and problems that future AR

systems need to overcome. This experience was

gathered during the design and development of an AR

framework for the Android™ platform. User experience

evaluations showed a great demand for overlay

collision avoidance and the value of being able to freeze

AR screens. These will be valuable for the design of

future mobile device based AR applications.

Keywords

Augmented reality, Design, Engine, Evaluation.

ACM Classification Keywords

H5.1. Information interfaces and presentation (e.g.,

HCI): Multimedia Information Systems – Artificial,

augmented and virtual realities.

General Terms

Design, Human Factors.

Copyright is held by the author/owner(s).

MobileHCI 2011, Aug 30–Sept 2, 2011, Stockholm, Sweden.

ACM 978-1-4503-0541-9/11/08-09.

Laurent Bindschaedler

Ecole Polytechnique Fédérale de Lausanne

EPFL IC, Station 14

CH-1015 Lausanne, Switzerland

laurent.bindschaedler@epfl.ch

Hendrik Knoche

Ecole Polytechnique Fédérale de Lausanne

EPFL IC, Station 14

CH-1015 Lausanne, Switzerland

hendrik.knoche@epfl.ch

Jeffrey Huang

Ecole Polytechnique Fédérale de Lausanne

EPFL IC, Station 14

CH-1015 Lausanne, Switzerland

jeffrey.huang@epfl.ch

 2

Introduction

Augmented reality (AR) applications typically infuse a

live video capture of the real world with value-added

information. A view of reality is thus enhanced with

digital media such as graphics, text or sound called

overlays. In AR systems, both real and virtual worlds

coexist, allowing the user to interact with the

context [1]. Typical applications of AR target museums,

navigation, military cockpits, sightseeing,

advertisement and education [2].

However, actual implementations on personal use are

few and far between, mostly due to the complexity and

costs involved in designing and implementing such

systems. Faced with an absence of practical software

development support, we designed an Augmented

Reality Engine (ARE), which provides a proof-of-

concept of AR applications on current hard- and

software platforms and the basis for an AR application

framework on the Android™ platform.

The next section briefly surveys the existing state of

the art for AR. We then introduce and discuss the

design of the ARE and conclude with some preliminary

insights into the design and User eXperience (UX) of AR

applications on handheld devices.

Background

Most of the 1990s AR research proposed augmented

reality platforms based on head-mounted displays and

handheld devices. Now, with sufficient hardware in

processing, cameras and sensors, smartphones and

slate tablets have become an option for discretionary

applications. Two distinct AR application paradigms

have emerged: location-based and vision-based. Both

are based on drawing overlays onto a picture or video.

In location-based AR, overlays are drawn on the screen

based on the location of data items, e.g. pointing the

camera towards the Eiffel tower would show historical

information. On the other hand, vision-based AR

leverages computer vision techniques to recognize and

track objects, e.g. drawing a virtual teapot on a real

table. The most prominent location-based AR

applications on mobile devices are Layar [3] and

Wikitude [4], which provide some application

programming interfaces (APIs). They tend, however, to

relegate developers to data providers as they do not

allow for much user interface customization and

providers must be validated in a sandbox approach.

Currently, the main vision-based AR tools are the

ARToolKit [5] and the Qualcomm AR Software

Development Kit [6]. They provide basic computer

vision algorithms but more advanced functionalities,

such as object tracking and distance computation, are

often not available. Nevertheless the status quo in AR

development hinders the creation of novel AR

applications and stymies the exploration of this field.

Augmented Reality Engine

Our ARE simplifies building location-based AR

applications. Initially, it was designed as an Adobe

Flash™ prototype for desktop and smartphones. Once

the prototype evaluations were satisfactory, we

implemented the ARE on the Android™ platform.

The ARE supports a standalone and an embedded mode

within another application. In standalone mode, AR

views can be easily deployed by providing the ARE with

the information to display, e.g., to display adjacent

restaurants. The ARE can also be used in embedded

mode, where the developer has much finer control, e.g.

to implement viewing restaurant menus, ratings and

making reservations.

 3

The high-level software architecture of the ARE consists

of three subsystems. The display subsystem handles

the camera rendering, the display of overlays and all

touch-based interaction. The positioning subsystem

manages the sensors (compass, accelerometer) and

the Global Positioning System (GPS) unit and adapts

the frequency settings for sensor updates. The data

subsystem manages different data sources

representing, for instance, a person or a location.

Location-based AR applications need to obtain the

location and orientation of the device, as well as the

location of data items. The orientation is defined by

means of three angles (azimuth, roll and pitch)

provided by sensors. Raw orientation values tend

however to oscillate (due to shaky hands or sensor

inaccuracy) and result in jittery or jerky overlays.

Similarly, the location updates of data items can be

sparse or inaccurate.

In order to prevent related display issues, it is a good

idea to interpolate the movement of overlays on the

screen. The ARE interpolates the angle values by

sampling angle values using an Exponentially Weighted

Moving Average (EWMA) scheme as follows:

The value of k (typically 0.1) is empirically determined

from the frame rate to provide a smooth experience. To

avoid aliasing problems, we always interpolate across

the smallest angle in absolute value and adjust the

sampling frequency of angles so that the difference

between successive samples is less than 180°.

Given the device orientation and location, the screen

position where an overlay should be drawn can be

computed based its location and altitude. We first

obtain relative horizontal and vertical angles and map

these to screen positions by a proportionality rule.

Proper mapping of overlays to on-screen positions

requires calibration of the camera view angles. In the

margin, we describe a fast technique to measure these

angles using basic trigonometry and a ruler.

The display subsystem is the main processing

bottleneck. We used two tricks to speed it up. First, we

optimize the selection process of overlays to draw on

the screen based the field of vision. Overlays are sorted

by distance and filtered by proximity to the device

before they are tested for containment within a circle

enclosing the screen area. A special caching technique

is used where filtered overlays are marked as being

outside the field of view. The cache is invalidated on

device movement or change of orientation. Second, we

optimize the view tree. The straightforward approach of

drawing each overlay on its own layer, with

superimposed layers, complicates the view tree

immeasurably. Instead, all overlays are drawn in a

single layer, which however requires the ARE to handle

the drawing of overlays and dispatch of events (e.g.

clicks) to the appropriate overlays.

Innovative features

The ARE supports a variety of customizations for

overlays. The programmer can define their own shapes

and colors for each overlay (2D or 3D). The ARE

supports non-location based overlays that require an

on-screen position, e.g. an arrow to guide the user.

Interaction with overlays, such as defining behaviors

for click and long click, is fully customizable. Display

dialogs, drag and drop and customized haptic feedback

can be based on this. The engine can display text along

with the overlays or in dedicated text boxes. Finally,

overlays can be drawn with adaptive translucency.

Makeshift experimental setting to

measure camera viewing angles — We

take a picture of a ruler from a known

distance in both horizontal and vertical

directions and then measure the span of

the ruler on each picture. The view angles

are computed using trigonometry. This

typically results in a less than 1% error.

Screenshot of the first Flash™ prototype.

 4

We provide a freeze frame feature for users to pause

the camera preview and the overlays, so they can

examine the situation in a more relaxing posture. It is

similar to taking a picture with the camera but the

overlays remain fully interactive. In addition, users can

zoom on it with a pinch. Unlike the camera preview, the

frozen frame has the maximum camera resolution.

UX Evaluation

We used and evaluated the ARE with an AR application

that augmented existing calendar solutions and

location-based social networking by displaying, e.g.,

geographical location of friends using Google Latitude.

The prototyping was interleaved with expert reviews

and UX evaluations were conducted on task-based

scenarios with four young adults, mostly students. We

obtained feedback both during the evaluation (through

talking aloud protocols) and after (debrief interviews).

One of our early findings related to the complexity of

the user interface was the need for a lean interface,

which did not include too many indicators or buttons.

We found that some users enjoyed the sense of

empowerment provided by having all the features

readily available, but most were confused and wary of

clicking on the wrong button. As a result, we strived to

provide an uncluttered interface where functionality

does not get in the way of the main AR experience.

Throughout our evaluations, users were very concerned

about collisions, almost as if the overlays represented

cars about to collide and found it ―very distracting to

see overlays occupy the same point in space‖.

Interpolation can further intensify collisions, especially

in case of rapid movements. Limiting the number of

overlays and making use of depth information to adjust

the size of overlays can help reduce collisions.

Great attention was paid to making the overlays and

the interaction with the application as smooth as

possible, in order to convey a sense of control to the

user. The freeze frame feature received nothing but

positive feedback. Quoting one user, this feature ―helps

diminish the feeling of being stupid standing in a crowd,

looking like you’re taking pictures‖.

UX evaluations also confirmed the fact that a seamless

and continuous integration with other applications on

the device (such as calendar, contacts, messaging,

etc.) was necessary to solve common tasks.

Conclusion

We presented the Augmented Reality Engine, an AR

library which illustrates the concept of Do It Yourself

Augmented Reality. Besides introducing the reader to

the design of location-based AR applications, we shared

some UX findings from our various evaluations, which

emphasized the need for seamlessness. We also

introduced some novel UX improvements and a new

interaction paradigm that allows freezing the view.

References and Citations
[1] Azuma, R. A Survey of Augmented Reality, Presence:
Teleoperators and Virtual Environments, August 1997.

[2] Kostaras, N. and Xenos, M. Assessing the usability of
augmented reality systems. 13th Panhellenic Conference on
Informatics, September 2009, 197-201.

[3] Layar Reality Browser website.
http://www.layar.com

[4] Wikitude website.
http://www.wikitude.org

[5] ARToolKit website.
http://www.hitl.washington.edu/artoolkit/

[6] Qualcomm Augmented Reality SDK website.
http://developer.qualcomm.com/dev/augmented-reality

Display dialog associated with an overlay —

Text under the overlay is shortened, while

it is displayed entirely in the dialog. Text

shortening can help reduce overlap

between overlays.

Example of an ARE application.

