
Benchmarking X-Stream and Graphchi

Laurent Bindschaedler

LABOS, EPFL

laurent.bindschaedler@epfl.ch

Amitabha Roy

LABOS, EPFL

amitabha.roy@epfl.ch

1 Introduction

A number of graph processing systems have been proposed that operates using secondary storage on a single

machine. In the interests of furthering research we (LABOS) and others (Graphchi, CMU) have released

the source code of X-Stream [1] and Graphchi [2] as examples of such systems in source code form. The

initial set of comparisons between X-Stream and Graphchi in the SOSP 2013 paper were limited to a one

type of SSD. We extend those benchmarks in this short report by considering a variety of storage devices. In

addition, our own experience with benchmarking both these systems has shown that it can often be tricky for

newcomers to property set up and benchmark them. Therefore we present detailed notes on our benchmark

runs to ensure that others can replicate them and avoid subtle errors.

2 Environments

The detailed environment for our benchmarking is as follows.

2.1 Software

We benchmark X-Stream (version 0.9). This is version 0.8 with a minor bugfix that incorporates changes to

the way Linux does direct I/O with more recent kernel versions.

We benchmarked Graphchi (https://github.com/GraphChi/graphchi-cpp), checked out on June 2, 2014.

2.2 Machines

• LABOS: This is the same machine as used in our SOSP 2013 paper with some minor changes. AMD

Opteron (6272, 2.1Ghz), dual-socket, 32-core system with 32GB memory. It has two Intel 200 GB

PCI Express SSDs (Intel) arranged in a software RAID-0 configuration and three 3TB 7200 RPM

magnetic disks arranged in a software RAID-0 configuration.

• Cambridge: Use of this machine is courtesy Eiko Yoneki at the University of Cambridge. This is

an AMD Opteron(6344, 2.6Ghz), dual-socket, 24-core system with 256 GB of memory. It has a

number of SSDs that were used for benchmarking: A Samsung 840, OCZ Vertex, two Samsung 840s

arranged in a software RAID-0 configuration and finally a 1TB 7200 RPM magnetic disk. The system

runs stock Ubuntu 12.04.

1

Before proceeding further we remark that the vendor names have been mentioned for completeness. The

benchmark results should not be taken to reflect the relative capabilities of the devices (especially the SSDs).

Extracting good performance from X-Stream (and we presume, Graphchi) requires tuning them and this

document discusses out of the box benchmarking only.

3 Setup

We benchmarked weakly connected components and pagerank on both the systems for the widely used

snapshot of the Twitter followers graph [3]. This data is directed and therefore we convert it to an undirected

graph (by including a reverse edge for every directed edge) in order to compute connected components.

We executed both Graphchi and X-Stream using 8 GB of memory (in order to ensure that the graph is not

cached). The configuration of the two were as follows:

3.1 X-Stream

benchmark_driver -p 8 -a -b pagerank -g twitter_rv --physical_memory 8589934592

benchmark_driver -p 8 -a -b cc -g twitter_rv-undirected --physical_memory 8589934592

On all the machines we used 8 cores for the benchmarks. Increased core counts showed little benefit to

performance since the bottleneck in all cases was secondary storage.

3.2 Graphchi

We setup graphchi.conf to contain the following values (recommended for use on an 8GB system).

GraphChi configuration.

Commandline parameters override values in the configuration file.

execthreads=16

loadthreads = 4

niothreads = 2

Good for 8gigs

membudget_mb = 2000

cachesize_mb = 1000

I/O settings

io.blocksize = 1048576

mmap = 0 # Use mmaped files where applicable

Comma-delimited list of metrics output reporters.

Can be "console", "file" or "html"

metrics.reporter = console,file,html

metrics.reporter.filename = graphchi_metrics.txt

metrics.reporter.htmlfile = graphchi_metrics.html

The command lines used were:

bin/example_apps/connectedcomponents file twitter_rv-und.tsv filetype edgelist

/bin/example_apps/pagerank_functional mode sync file twitter_rv.tsv filetype edgelist niters 5

2

An easy to make benchmarking error is to assume that these settings are sufficient to make Graphchi run

using 8GB of memory on machines with more RAM (ours have 64GB and 256GB respectively). Graphchi

uses read, write and mmap to access data from disk. This leaves the operating system free to cache data in its

pagecache which (on Linux) grows to fill all available memory. Therefore simply running with these settings

for Graphchi would cause the graph to be cached entirely in RAM with no I/O and easily outperforming any

system that is using secondary storage (such as X-Stream with the settings above).

Our solution was to run a background program that allocated and then mlocked all RAM except 8GB and

then went to sleep. This utility program (utils/block_mem.cpp) is available in the 0.9 release of X-

Stream. It ensures that exactly 8GB of memory including the pagecache are available to Graphchi. Note

that X-Stream does direct I/O and therefore does not use the pagecache.

Another important point to keep in mind is the input to the two. X-Stream takes as input an unordered

edge list in a binary file format (records consisting of a 4 byte source, 4 byte destination and 4 byte random

weight). Graphchi takes as input a comma separated tsv file with the source and destination. Our starting

point for the measurement is when these files are available and X-Stream and Graphchi are ready to run. We

do (as a matter of courtesy) provide simple python scripts to convert tsv files to the X-Stream format in our

release. These single threaded python are not meant to be benchmarked (or even intended to be fast) so we

do not report any numbers for them.

4 Results

In the case of X-Stream, we measure runtime as the reported wall time which is an output of the form:

<INFO 0x1b3f740> CORE::TIME::WALL 1835.5 seconds

This is the time taken from program start to finish. X-Stream does not do any pre-processing as it streams

unordered edge lists.

In the case of Graphchi, we report from the output the time taken for sharding (preprocessing), which is a

line of the form:

execute_sharding: 962.695 s

and the time taken for actual execution of the algorithm, which is a line of the form:

runtime: 4138.51 s

The results for the runs are shown in the Table 1 for connected components and in Table 2 for pagerank. We

report the average of five runs in seconds and include the 99% confidence intervals around the average.

5 Summary

The results from our experiments largely confirms the observations in our SOSP paper [1] that X-Stream

outperforms Graphchi even when the pre-processing time in Graphchi is excluded, a comparison that is

unfair to X-Stream as it starts from an unordered edge list that Graphchi needs to sort and shard. A few

points however stand out. First, RAID with the Samsung 840 does not deliver the scaling performance that

we would have expected with both Graphchi and X-Stream. This is possibly due to configuration issues

with the RAID and the need for tuning of the IO block size in both Graphchi and X-Stream. The second

3

System Graphchi (shard) Graphchi (run) X-Stream

LABOS

Intel SSDs 965.401 ± 6.174 4101.284 ± 49.696 1171.766 ± 3.993

Disk 1087.612 ± 17.225 5801.214 ± 106.371 1821.172 ± 17.598

Cambridge

Samsung 840 748.569 ± 35.408 3933.532 ± 732.388 1797.546 ± 108.369

2xSamsung 840 674.993 ± 117.829 3372.794 ± 181.577 1445.540 ± 188.704

OCZ Vertex 735.388 ± 109.804 4190.728 ± 166.380 2069.136 ± 23.720

Disk 956.619 ± 25.546 5936.218 ± 2798.894 5338.932 ± 559.120

Table 1: Results for connected components

System Graphchi (shard) Graphchi (run) X-Stream

LABOS

Intel SSDs 486 ± 6.762 908.966 ± 16.667 417.213 ± 3.037

Disk 591.848 ± 19.885 1507 ± 13.656 616.795 ± 2.271

Cambridge

Samsung 840 389.569 ± 41.879 943.246 ± 19.754 588.613 ± 5.259

2xSamsung 840 375.729 ± 35.975 811.359 ± 23.706 443.396 ± 40.446

OCZ Vertex 423.104 ± 5.218 1079.138 ± 20.600 843.023 ± 276.625

Disk 590.584 ± 55.165 1879 ± 93.368 1613.174 ± 106.151

Table 2: Results for pagerank

point is that the gap between Graphchi and X-Streams appears to be quite narrow with the single hard disk

on the Cambridge system. The reason why the runtime of Graphchi is generally larger than X-Stream is that

the time required to create in-memory shards by resorting is dominant. For example, with pagerank on the

Samsung 50% of the Graphchi runtime is spent creating in-memory shards. However, with a slower drive

the I/O dominates in both Graphchi and X-Stream. For example with pagerank only 30% of the Graphchi

runtime is spent in creating memory shards. Due to the slower I/O device, both are held to this lowest

common denominator.

We hope that this short report illustrates how to benchmark both Graphchi and X-Stream. For X-Stream we

are extremely keen to hear back from people using and benchmarking it and would be more than glad to

help explain output and investigate any anomalies that might be observed.

References

[1] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph processing using

streaming partitions. In Proceedings of the ACM symposium on Operating Systems Principles, pages

472–488. ACM, 2013.

[2] Aapo Kyrola and Guy Blelloch. Graphchi: Large-scale graph computation on just a PC. In Proceedings

of the conference on Operating Systems Design and Implementation. USENIX Association, 2012.

[3] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a social network or

a news media? In Proceedings of the International conference on World Wide Web, pages 591–600.

ACM, 2010.

4

