CHAOS Scale-out Graph Processing from Secondary Storage

Amitabha Roy

Intel, Santa Clara

Laurent Bindschaedler

Jasmina Malicevic

Willy Zwaenepoel

EPFL, Switzerland

Large Graphs – Social Networks

Large Graphs – Brain

Large Graphs – Road Networks

How Large is a Large Graph?

A billion edges isn't cool. You know what's cool? A **TRILLION** edges!

- Avery Ching, Facebook

Graph Processing – HPC Approach

Single machine

In memory

Graph Processing – Facebook Approach

Many machines

In memory

Graph Processing – Chaos Approach

A few machines

Out-of-core

Challenge for Out-of-core

- Graph algorithms produce random accesses
- Performance requires sequential access
- A fortiori for secondary storage

_	
Ī	
ľ	
ł	
ł	
ł	

SHORT DIGRESSION

X-Stream [SOSP'13]

- Single-node (multi-core) graph processing
- Goal: make all access sequential!
- Two techniques:
 - Edge-centric graph processing
 - Streaming partitions

X-Stream – Programming Model

- Vertex-centric
 - Maintain state in vertex
 - Write a vertex program
- Vertex program has two methods
 - Scatter For all outgoing edges:
 new update = f(vertex value)
 - Gather For all incoming edges:
 vertex value = g(vertex value, update)

X-Stream – Overview

Expressive Power of Scatter Gather

X-Stream Design – Summary

Organize graph computation around edges to stream data from storage

Divide graph into partitions such that the vertex set for each partition fits in memory

Challenge for Distribution

Partitioning

Distribute partition of input

Locality

Load balance

Optimal partitioning is NP-hard

Partitioning – Existing Approaches

Partitioning – Chaos Approach

How do we split the input graph?

Answer: Split vertices in equal partitions!

Distribute partitions equally

Where do we put the edges?

Insight

For secondary storage in a cluster:

Locality hardly matters

 \Rightarrow Remote bandwidth ~ local bandwidth

 \Rightarrow Edges need not be stored with their streaming partition

Answer: Randomly distribute them!

Chaos Design Approach

1. X-Stream

Edge-centric Streaming partitions

2. Scale-out

Flat storage Distribute partitions

3. Chaos

Work stealing

Chaos Architecture

I/O Design

• Principle: Do not worry about locality

- Stripe graph data across nodes
 - Edge lists
 - Update lists

Vertex and Edge Distribution

Where do we read the next edge stripe?

Answer: From any random stripe!

In fact, we read several stripes...

Where do we write the update stripe?

Answer: choose any device at random

I/O Design – Summary

Without any access ordering

Without any central entity

Computation Design

• Principle: work stealing

- Start: one streaming partition per node
- Work stealing deals with load imbalance

Work Stealing Issue?

Multiple machines can work on the same streaming partition

Computation Imbalance

Stealing: Copy Vertex Accumulators

. . .

Stealing: Which edge stripe do we read?

Insight

For scatter and gather:

Order does not matters

 \Rightarrow No need for explicit division of work

 \Rightarrow Multiple machines can work on the same partition simultaneously

Answer: Any random stripe!

that has not been read!

Computation Design – Summary

Without synchronization

Without a centralized entity

Consequence of work stealing: Gather phase requires a **merge** function

Chaos – Summary

Striping	\rightarrow	I/O balance
Work stealing		Computation balance
Streaming partitions		Sequentiality

We achieve all of this

- without expensive partitioning
- without I/O synchronization

Evaluation

- 32 nodes (one rack)
- 32GB RAM, 480GB SSD, 2x6TB HDD
- Full-bisection bandwidth 40GigE switch

Results Overview

1.61X

Average Scaling Factor from 1 machine to 32 (weak scaling)

13X

Average Speedup with 32 machines (strong scaling)

19 hours

to run 5 iterations of PageRank on a graph with 1T edges

9 hours

to solve BFS on a graph with 1T edges

Weak Scaling Results

Input size doubles when m doubles

Why does it not stay at 1?

- Load balance isn't perfect
- Work stealing introduces overheads
- Some algorithms generate more updates

Is work stealing optimal?

Input size remains fixed **Strong Scaling Results 8X 22X** 1 **Normalized Runtime 8.0** 0.6 0.4 0.2 **13X** 0 Cond SpMV BFS WCC MCST MIS **SSSP** SCC PR BP **Algorithms m=1 m=2 m=4 m=8** ■ m=16 **m=32**

Why does it scale well?

Are there any scaling limitations?

Bottleneck resource Performance suffers if network < storage Full-bisection bandwidth necessary

Bottleneck resource Unrealized performance (waste) if storage < network

Low impact

Possible minor impact on performance in some applications (e.g., FPU intensive)

Comparison to Other Systems

How large can we go?

Only **8X** smaller than the largest graph ever processed

Conclusion

CHAOS Scale-out Graph Processing from Secondary Storage

https://github.com/labos-epfl/chaos

http://labos.epfl.ch/

