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Large Graphs – Social Networks
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Large Graphs – Brain
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Large Graphs – Road Networks
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How Large is a Large Graph?

A billion edges isn’t cool. You know 
what’s cool? A TRILLION edges!
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– Avery Ching, Facebook

“ “



Graph Processing – HPC Approach
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Single machine

In memory



Graph Processing – Facebook Approach
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Many machines

In memory



Graph Processing – Chaos Approach
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+

A few machines Out-of-core



Challenge for Out-of-core

• Graph algorithms produce random accesses

• Performance requires sequential access

• A fortiori for secondary storage
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X-Stream [SOSP’13]

• Single-node (multi-core) graph processing

• Goal: make all access sequential! 

• Two techniques:

• Edge-centric graph processing

• Streaming partitions

10

SHORT DIGRESSION



X-Stream – Programming Model
• Vertex-centric

• Maintain state in vertex

• Write a vertex program

• Vertex program has two methods

• Scatter – For all outgoing edges: 
new update = f(vertex value)

• Gather – For all incoming edges: 
vertex value = g(vertex value, update)



X-Stream – Overview
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Expressive Power of Scatter Gather
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Scatter
Gather

Structure Mining
(W)CC, MIS, MCST,
Triangle Counting

Traversal
BFS, SSSP

SpMV and
variants

Collaborative 
Filtering
ALS

Machine Learning
PageRank, BP,

Cond       .

Graph Statistics
HyperANF,
Centralities



X-Stream Design – Summary

Organize graph computation around edges to 
stream data from storage
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Edge Centric

Divide graph into partitions such that the vertex
set for each partition fits in memory

Streaming Partitions



Challenge for Distribution
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? ? ? ?



Partitioning
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Distribute partition of input

Locality Load balance

Optimal partitioning is NP-hard



Partitioning – Existing Approaches
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Edge cuts
Pregel [SIGMOD’10]

Giraph [HADOOP’11]

Vertex cuts
PowerGraph [OSDI’12]

Sorting & sharding
GraphChi [OSDI’12]

Hilbert curve
Naiad [SOSP’13]



Partitioning – Chaos Approach
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How do we split the input graph?
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Answer: Split vertices in equal partitions!



Distribute partitions equally
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Where do we put the edges?
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? ? ? ?



Insight

For secondary storage in a cluster:

Locality hardly matters

⇒ Remote bandwidth ~ local bandwidth

⇒ Edges need not be stored with their 
streaming partition

23



Answer: Randomly distribute them!
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Chaos Design Approach
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1. X-Stream
Edge-centric
Streaming partitions

2. Scale-out
Flat storage
Distribute partitions

3. Chaos
Work stealing

I/O BALANCE

COMPUTATION BALANCE

SEQUENTIALITY



Chaos Architecture
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Chaos (process)
Compute
Engine

Storage
Engine

Network (∅MQ threads)

Local storage

Chaos Chaos

Full bisection
bandwidth Network

NIC



I/O Design

• Principle: Do not worry about locality

• Stripe graph data across nodes

• Edge lists

• Update lists
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Vertex and Edge Distribution
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Where do we read the next edge stripe?
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? ? ? ?
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Answer: From any random stripe!
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that has not 
been read!
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In fact, we read several stripes…
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Where do we write the update stripe? 

V’

U’ …

…
? ? ? ?
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Answer: choose any device at random

V’

U’

…

…
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I/O Design – Summary

Without any access ordering

Without any central entity
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FLAT STORAGE



Computation Design

• Principle: work stealing

• Start: one streaming partition per node

• Work stealing deals with load imbalance
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Work Stealing Issue?
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Computation 
Imbalance

Multiple machines can work on
the same streaming partition

Multiple machines access
the edge/update list

Synchronization??

>
>

>X



Stealing: Copy Vertex Accumulators
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Stealing: Which edge stripe do we read?

V’

E’ E’ E’ E’
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V’

? ? ? ?
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Insight

For scatter and gather:

Order does not matters

⇒ No need for explicit division of work

⇒ Multiple machines can work on the 
same partition simultaneously
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Answer: Any random stripe!
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…

…E’

V’

? ? ? ?

that has not 
been read!
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Computation Design – Summary

Without synchronization

Without a centralized entity

Consequence of work stealing:
Gather phase requires a merge function
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WORK STEALING



Chaos – Summary

We achieve all of this

• without expensive partitioning

• without I/O synchronization
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Striping è I/O balance
Work stealing è Computation balance
Streaming partitions è Sequentiality



Evaluation

• 32 nodes (one rack)

• 32GB RAM, 480GB SSD, 2x6TB HDD

• Full-bisection bandwidth 40GigE switch
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Results Overview
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1.61X
Average Scaling Factor 
from 1 machine to 32
(weak scaling)

13X
Average Speedup
with 32 machines

(strong scaling)

9 hours
to solve BFS on a
graph with 1T edges

19 hours
to run 5 iterations
of PageRank on a

graph with 1T edges



Weak Scaling Results
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Why does it not stay at 1?

• Load balance isn’t perfect

• Work stealing introduces overheads

• Some algorithms generate more updates
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Is work stealing optimal?
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Strong Scaling Results
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Why does it scale well?
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Are there any scaling limitations?
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Network

Storage

Compute

Bottleneck resource
Performance suffers if network < storage
Full-bisection bandwidth necessary

Bottleneck resource
Unrealized performance (waste) 
if storage < network

Low impact
Possible minor impact on performance
in some applications (e.g., FPU intensive)



Comparison to Other Systems
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How large can we go?
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BFS, 32 machines (2 x 6TB HDDs)

Input: 16TB
I/O: 218TB
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than the largest 
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processed
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If you can store the graph, you can compute on it!



Conclusion
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Chaos can process 
large graphs

On a small
cluster of machines

Using secondary
storage

Without 
expensive partitioning
or I/O synchronization



CHAOS
Scale-out Graph Processing 
from Secondary Storage
https://github.com/labos-epfl/chaos

http://labos.epfl.ch/
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