
CHAOS
Scale-out Graph Processing
from Secondary Storage
Amitabha Roy Intel, Santa Clara

Laurent Bindschaedler

Jasmina Malicevic EPFL, Switzerland

Willy Zwaenepoel

1

Large Graphs – Social Networks

2

Large Graphs – Brain

3

Large Graphs – Road Networks

4

How Large is a Large Graph?

A billion edges isn’t cool. You know
what’s cool? A TRILLION edges!

5

– Avery Ching, Facebook

“ “

Graph Processing – HPC Approach

6

Single machine

In memory

Graph Processing – Facebook Approach

7

Many machines

In memory

Graph Processing – Chaos Approach

8

+

A few machines Out-of-core

Challenge for Out-of-core

• Graph algorithms produce random accesses

• Performance requires sequential access

• A fortiori for secondary storage

9

X-Stream [SOSP’13]

• Single-node (multi-core) graph processing

• Goal: make all access sequential!

• Two techniques:

• Edge-centric graph processing

• Streaming partitions

10

SHORT DIGRESSION

X-Stream – Programming Model
• Vertex-centric

• Maintain state in vertex

• Write a vertex program

• Vertex program has two methods

• Scatter – For all outgoing edges:
new update = f(vertex value)

• Gather – For all incoming edges:
vertex value = g(vertex value, update)

X-Stream – Overview

12

Edges Updates

Vertices

Updates

Vertices

Scatter Gather

Expressive Power of Scatter Gather

13

Scatter
Gather

Structure Mining
(W)CC, MIS, MCST,
Triangle Counting

Traversal
BFS, SSSP

SpMV and
variants

Collaborative
Filtering
ALS

Machine Learning
PageRank, BP,

Cond .

Graph Statistics
HyperANF,
Centralities

X-Stream Design – Summary

Organize graph computation around edges to
stream data from storage

14

Edge Centric

Divide graph into partitions such that the vertex
set for each partition fits in memory

Streaming Partitions

Challenge for Distribution

15

? ? ? ?

Partitioning

16

Distribute partition of input

Locality Load balance

Optimal partitioning is NP-hard

Partitioning – Existing Approaches

17

Edge cuts
Pregel [SIGMOD’10]

Giraph [HADOOP’11]

Vertex cuts
PowerGraph [OSDI’12]

Sorting & sharding
GraphChi [OSDI’12]

Hilbert curve
Naiad [SOSP’13]

Partitioning – Chaos Approach

18

19

How do we split the input graph?

20

Answer: Split vertices in equal partitions!

Distribute partitions equally

21

Where do we put the edges?

22

? ? ? ?

Insight

For secondary storage in a cluster:

Locality hardly matters

⇒ Remote bandwidth ~ local bandwidth

⇒ Edges need not be stored with their
streaming partition

23

Answer: Randomly distribute them!

24

Chaos Design Approach

25

1. X-Stream
Edge-centric
Streaming partitions

2. Scale-out
Flat storage
Distribute partitions

3. Chaos
Work stealing

I/O BALANCE

COMPUTATION BALANCE

SEQUENTIALITY

Chaos Architecture

26

Chaos (process)
Compute
Engine

Storage
Engine

Network (∅MQ threads)

Local storage

Chaos Chaos

Full bisection
bandwidth Network

NIC

I/O Design

• Principle: Do not worry about locality

• Stripe graph data across nodes

• Edge lists

• Update lists

27

Vertex and Edge Distribution

V’

E’ E’ E’ E’ E’ E’ E’ E’

…

…
28

Where do we read the next edge stripe?

V’

E’ E’ E’ E’ E’ E’ E’ E’

…

…
? ? ? ?

29

Answer: From any random stripe!

V’

E’ E’ E’ E’ E’ E’ E’

…

…
E’

that has not
been read!

30

In fact, we read several stripes…

V’

E’

E’

E’ E’

E’

E’

…

…
E’

E’

31

Where do we write the update stripe?

V’

U’ …

…
? ? ? ?

32

Answer: choose any device at random

V’

U’

…

…
33

I/O Design – Summary

Without any access ordering

Without any central entity

34

FLAT STORAGE

Computation Design

• Principle: work stealing

• Start: one streaming partition per node

• Work stealing deals with load imbalance

35

Work Stealing Issue?

36

Computation
Imbalance

Multiple machines can work on
the same streaming partition

Multiple machines access
the edge/update list

Synchronization??

>
>

>X

Stealing: Copy Vertex Accumulators

V’

E’ E’ E’ E’

…

…E’

V’

37

Stealing: Which edge stripe do we read?

V’

E’ E’ E’ E’

…

…E’

V’

? ? ? ?

38

Insight

For scatter and gather:

Order does not matters

⇒ No need for explicit division of work

⇒ Multiple machines can work on the
same partition simultaneously

39

Answer: Any random stripe!

V’

E’ E’ E’ E’

…

…E’

V’

? ? ? ?

that has not
been read!

40

Computation Design – Summary

Without synchronization

Without a centralized entity

Consequence of work stealing:
Gather phase requires a merge function

41

WORK STEALING

Chaos – Summary

We achieve all of this

• without expensive partitioning

• without I/O synchronization

42

Striping è I/O balance
Work stealing è Computation balance
Streaming partitions è Sequentiality

Evaluation

• 32 nodes (one rack)

• 32GB RAM, 480GB SSD, 2x6TB HDD

• Full-bisection bandwidth 40GigE switch

43

Results Overview

44

1.61X
Average Scaling Factor
from 1 machine to 32
(weak scaling)

13X
Average Speedup
with 32 machines

(strong scaling)

9 hours
to solve BFS on a
graph with 1T edges

19 hours
to run 5 iterations
of PageRank on a

graph with 1T edges

Weak Scaling Results

45

0

0.5

1

1.5

2

2.5

BFS WCC MCST MIS SSSP SCC PR Cond SpMV

No
rm

al
ize

d
Ru

nt
im

e

Algorithms
m=1 m=2 m=4 m=8 m=16 m=32

0.97X

1.61X

2.29X

Input size
doubles when

m doubles

Why does it not stay at 1?

• Load balance isn’t perfect

• Work stealing introduces overheads

• Some algorithms generate more updates

46

Is work stealing optimal?

47

0

0.5

1

1.5

2

BFS
α=0

BFS
α=0.8

BFS
α=1.0

BFS
α=1.2

BFS
α=∞

PR
α=0

PR
α=0.8

PR
α=1.0

PR
α=1.2

PR
α=∞No

rm
al

ize
d

Ag
gr

eg
at

e B
an

dw
id

th

Algorithms
gp,master==me gp,master!=me copy merge merge wait barrier

High imbalance Large copy+merge
time

Strong Scaling Results

48

0

0.2

0.4

0.6

0.8

1

BFS WCC MCST MIS SSSP SCC PR Cond SpMV BP

No
rm

al
ize

d
Ru

nt
im

e

Algorithms
m=1 m=2 m=4 m=8 m=16 m=32

13X

8X 22X

Input size
remains fixed

Why does it scale well?

49

0.5

1

2

4

8

16

32

1 2 4 8 16 32No
rm

al
ize

d
Ag

gr
eg

at
e B

an
dw

id
th

Machines
BFS WCC MCST MIS SSSP SCC PR Cond. SpMV BP

Chaos runs constantly at near-maximum
I/O bandwidth (within 3%)

Are there any scaling limitations?

50

Network

Storage

Compute

Bottleneck resource
Performance suffers if network < storage
Full-bisection bandwidth necessary

Bottleneck resource
Unrealized performance (waste)
if storage < network

Low impact
Possible minor impact on performance
in some applications (e.g., FPU intensive)

Comparison to Other Systems

51

0.5
1
2
4
8

16
32
64

128

1 2 4 8 16 32

No
rm

al
ize

d
Ru

nt
im

e

Machines

BFS, SSD

Chaos Chaos Centralized Giraph

128X

3.5X

1.5X

How large can we go?

52

9
20

45

95

0

20

40

60

80

100

1 2 4 8

Ru
nt

im
e (

ho
ur

s)

RMAT Size in Trillion Edges

BFS, 32 machines (2 x 6TB HDDs)

Input: 16TB
I/O: 218TB

Only 8X smaller
than the largest

graph ever
processed

Input: 128TB
I/O: 1.75PB

If you can store the graph, you can compute on it!

Conclusion

53

Chaos can process
large graphs

On a small
cluster of machines

Using secondary
storage

Without
expensive partitioning
or I/O synchronization

CHAOS
Scale-out Graph Processing
from Secondary Storage
https://github.com/labos-epfl/chaos

http://labos.epfl.ch/

54

