CHAOS
Scale-out Graph Processing from Secondary Storage

Amitabha Roy
Intel, Santa Clara

Laurent Bindschaedler

Jasmina Malicevic
EPFL, Switzerland

Willy Zwaenepoel
Large Graphs – Social Networks
Large Graphs – Brain
Large Graphs – Road Networks
How Large is a Large Graph?

“

A billion edges isn’t cool. You know what’s cool? A TRILLION edges!

– Avery Ching, Facebook
Graph Processing – HPC Approach

Single machine
In memory
Graph Processing – Facebook Approach

Many machines
In memory
Graph Processing – Chaos Approach

A few machines + Out-of-core
Challenge for Out-of-core

- Graph algorithms produce random accesses
- Performance requires sequential access
- A fortiori for secondary storage
X-Stream [SOSP’13]

- Single-node (multi-core) graph processing
- Goal: make all access sequential!
- Two techniques:
 - Edge-centric graph processing
 - Streaming partitions
X-Stream – Programming Model

- Vertex-centric
 - Maintain state in vertex
 - Write a vertex program

- Vertex program has two methods
 - Scatter – For all outgoing edges:
 \[
 \text{new update} = f(\text{vertex value})
 \]
 - Gather – For all incoming edges:
 \[
 \text{vertex value} = g(\text{vertex value, update})
 \]
X-Stream – Overview

Scatter
- Edges
- Vertices
- Updates

Gather
- Updates
- Vertices
Expressive Power of Scatter Gather

Collaborative Filtering
ALS

SpMV and variants

Structure Mining
(W)CC, MIS, MCST, Triangle Counting

Graph Statistics
HyperANF, Centralities

Traversal
BFS, SSSP

Machine Learning
PageRank, BP, Cond
X-Stream Design – Summary

Edge Centric
Organize graph computation around edges to stream data from storage

Streaming Partitions
Divide graph into partitions such that the vertex set for each partition fits in memory
Challenge for Distribution
Partitioning

Distribute partition of input

Optimal partitioning is NP-hard
Partitioning – Existing Approaches

Edge cuts
- Pregel [SIGMOD’10]
- Giraph [HADOOP’11]

Vertex cuts
- PowerGraph [OSDI’12]

Sorting & sharding
- GraphChi [OSDI’12]

Hilbert curve
- Naiad [SOSP’13]
Partitioning – Chaos Approach
How do we split the input graph?
Answer: Split vertices in equal partitions!
Distribute partitions equally
Where do we put the edges?
Insight

For secondary storage in a cluster:

- Locality hardly matters

 ⇒ Remote bandwidth ~ local bandwidth

 ⇒ Edges need not be stored with their streaming partition
Answer: Randomly distribute them!
Chaos Design Approach

1. X-Stream
 Edge-centric
 Streaming partitions

2. Scale-out
 Flat storage
 Distribute partitions

3. Chaos
 Work stealing
Chaos Architecture

Chaos (process)

Compute Engine

Storage Engine

Network (ØMQ threads)

Local storage

Chaos

Chaos

NIIC

Full bisection bandwidth Network
I/O Design

- Principle: Do not worry about locality

- Stripe graph data across nodes
 - Edge lists
 - Update lists
Vertex and Edge Distribution

\[V' \]

\[E' \]
Where do we read the next edge stripe?
Answer: From any random stripe!

that has not been read!
In fact, we read several stripes...
Where do we write the update stripe?
Answer: choose any device at random
I/O Design – Summary

FLAT STORAGE

Without any access ordering

Without any central entity
Computation Design

- Principle: work stealing
- Start: one streaming partition per node
- Work stealing deals with load imbalance
Work Stealing Issue?

Multiple machines can work on the same streaming partition

Computation Imbalance

Synchronization??

Multiple machines access the edge/update list
Stealing: Copy Vertex Accumulators

V' → V'

E' E' E'
Stealing: Which edge stripe do we read?
Insight

For **scatter** and **gather**:
Order does not matters

⇒ No need for explicit division of work
⇒ Multiple machines can work on the same partition simultaneously
Answer: Any random stripe!
Computation Design – Summary

WORK STEALING

Without synchronization

Without a centralized entity

Consequence of work stealing:
Gather phase requires a \texttt{merge} function
Chaos – Summary

We achieve all of this

- without expensive partitioning
- without I/O synchronization
Evaluation

- 32 nodes (one rack)
- 32GB RAM, 480GB SSD, 2x6TB HDD
- Full-bisection bandwidth 40GigE switch
Results Overview

1.61X
Average Scaling Factor from 1 machine to 32 (weak scaling)

13X
Average Speedup with 32 machines (strong scaling)

9 hours
to solve BFS on a graph with 1T edges

19 hours
to run 5 iterations of PageRank on a graph with 1T edges
Weak Scaling Results

Normalized Runtime

Input size doubles when m doubles

Algorithms
- BFS
- WCC
- MCST
- MIS
- SSSP
- SGG
- PR
- Cond
- SpMV

Normalized Runtime:
- 0.97X
- 1.61X
- 2.29X
Why does it not stay at 1?

- Load balance isn’t perfect
- Work stealing introduces overheads
- Some algorithms generate more updates
Is work stealing optimal?

High imbalance

Large copy+merge time

Normalized Aggregate Bandwidth

Algorithms

- BFS
- PR

\(\alpha = 0 \) \hspace{1cm} \alpha = 0.8 \hspace{1cm} \alpha = 1.0 \hspace{1cm} \alpha = 1.2 \hspace{1cm} \alpha = \infty

\(\alpha = 0 \) \hspace{1cm} \alpha = 0.8 \hspace{1cm} \alpha = 1.0 \hspace{1cm} \alpha = 1.2 \hspace{1cm} \alpha = \infty

- gp, master == me
- gp, master != me
- copy
- merge
- merge wait
- barrier

High imbalance

Large copy+merge time
Strong Scaling Results

Input size remains fixed

Normalized Runtime

Algorithms: BFS, WCC, MCST, MIS, SSSP, SCC, PR, Cond, SpMV, BP

- m=1
- m=2
- m=4
- m=8
- m=16
- m=32
Why does it scale well?

Chaos runs constantly at near-maximum I/O bandwidth (within 3%)
Are there any scaling limitations?

Network
- **Bottleneck resource**
 - Performance suffers if network < storage
 - Full-bisection bandwidth necessary

Storage
- **Bottleneck resource**
 - Unrealized performance (waste)
 - if storage < network

Compute
- **Low impact**
 - Possible minor impact on performance in some applications (e.g., FPU intensive)
Comparison to Other Systems

Normalized Runtime

Machines

BFS, SSD

Normalized Runtime

128X

3.5X

1.5X
How large can we go?

BFS, 32 machines (2 x 6TB HDDs)

- **Input:** 16TB
- **I/O:** 218TB
- **Runtime:** 9 hours

- **Input:** 128TB
- **I/O:** 1.75PB
- **Runtime:** 95 hours

If you can store the graph, you can compute on it! Only 8X smaller than the largest graph ever processed.
Conclusion

Chaos can process large graphs on a small cluster of machines using secondary storage without expensive partitioning or I/O synchronization.
CHAOS
Scale-out Graph Processing from Secondary Storage

https://github.com/labos-epfl/chaos
http://labos.epfl.ch/