
Rock You like a Hurricane:
Taming Skew in Large Scale Analytics

Laurent Bindschaedler
Ecole Polytechnique Fédérale de

Lausanne (EPFL)

laurent.bindschaedler@epfl.ch

Jasmina Malicevic
Ecole Polytechnique Fédérale de

Lausanne (EPFL)

jasmina.malicevic@epfl.ch

Nicolas Schiper*

Logitech

nschiper@logitech.com

Ashvin Goel
University of Toronto

ashvin@eecg.toronto.edu

Willy Zwaenepoel
Ecole Polytechnique Fédérale de

Lausanne (EPFL)

willy.zwaenepoel@epfl.ch

ABSTRACT

Current cluster computing frameworks suffer from load imbalance
and limited parallelism due to skewed data distributions, processing
times, and machine speeds. We observe that the underlying cause for
these issues in current systems is that they partition work statically.
Hurricane is a high-performance large-scale data analytics system
that successfully tames skew in novel ways. Hurricane performs
adaptive work partitioning based on load observed by nodes at run-
time. Overloaded nodes can spawn clones of their tasks at any point
during their execution, with each clone processing a subset of the
original data. This allows the system to adapt to load imbalance and
dynamically adjust task parallelism to gracefully handle skew. We
support this design by spreading data across all nodes and allow-
ing nodes to retrieve data in a decentralized way. The result is that
Hurricane automatically balances load across tasks, ensuring fast
completion times. We evaluate Hurricane’s performance on typical
analytics workloads and show that it significantly outperforms state-
of-the-art systems for both uniform and skewed datasets, because it
ensures good CPU and storage utilization in all cases.

CCS CONCEPTS

• Information systems; • Applied computing; • Computer sys-
tems organization → Architectures; Dependable and fault-tolerant
systems and networks; • Networks;

*Nicolas Schiper was with EPFL when this work was performed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190532

KEYWORDS

Hurricane, big data, analytics, cluster computing, skew, high perfor-
mance, task cloning, adaptive work partitioning, merging, repartition-
ing, load balancing, storage disaggregation, decentralized storage,
bags, chunks, fine-grained partitioning, distributed scheduling, batch
sampling, late binding.

ACM Reference Format:

Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper, Ashvin Goel,
and Willy Zwaenepoel. 2018. Rock You like a Hurricane: Taming Skew in
Large Scale Analytics. In EuroSys ’18: Thirteenth EuroSys Conference 2018,
April 23–26, 2018, Porto, Portugal. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3190508.3190532

1 INTRODUCTION

Application runtimes in data analytics frameworks are unpredictable
and underperforming on certain input datasets and software / hard-
ware configurations. These issues often occur because different tasks
within a job take different amounts of time to complete, causing
a load imbalance where some machines sit idle while waiting for
others to finish, thereby limiting the achievable degree of paral-
lelism. Slower tasks can degrade performance for the entire paral-
lel job, resulting in delayed job completion [12], resource under-
utilization [24, 48], and even application crashes.

Task runtime variance is caused by skew. Tasks may be assigned dif-
ferent amounts of data due to data skew in the partitioning [29, 40].
Such skew occurs intrinsically in many real-world datasets, making
it hard to create well-balanced partitions. For example, a web dataset
may have millions of records referring to a website, map-reduce algo-
rithms have popular keys, and social networking and graph datasets
have high degree vertices. Tasks may also suffer from compute skew,
wherein the execution time depends on the data, regardless of its size.
For instance, an algorithm may do more processing on some inputs
or selectively filter data [23]. Besides data and compute skew, task
runtime can also be affected by machine skew, for example, hetero-
geneous or faulty machines [10]. A search for “skew” in analytics
workloads on stackoverflow [9] yields hundreds of relevant results

https://doi.org/10.1145/3190508.3190532
https://doi.org/10.1145/3190508.3190532

EuroSys ’18, April 23–26, 2018, Porto, Portugal L. Bindschaedler et al.

from programmers experiencing painful problems and unexpected
crashes due to improper handling of skew.

This paper describes Hurricane, a high-performance analytics system
that achieves fast execution times and high cluster utilization with
an adaptive task partitioning scheme. The core idea underlying this
scheme is task cloning, where an overloaded node can clone its tasks
on idle nodes, and have each clone process a subset of the original
input. This allows Hurricane to adaptively adjust parallelism within
a task, and dynamically improve load balance across nodes based
on observed load, at any point in time. This is the key to handling
highly skewed workloads: underperforming tasks can be split across
multiple nodes dynamically during their execution and idle nodes
can pick up a part of the task load.

By comparison, state-of-the-art frameworks such as Hadoop [25]
and Spark [47] struggle to achieve load balance and good parallelism
because they rely on static partitioning of work. Partitions are created
based on storage blocks or programmer defined split functions, but
the partition sizes and processing requirements often depend on the
dataset, and are thus known only at runtime. Once partition bounds
are fixed, the degree of parallelism for a stage cannot be dynamically
adjusted: it is not possible to split the work or increase parallelism
within a partition when it takes a long time to process, immaterial of
the reason it takes that long. For this same reason, while traditional
straggler mitigation techniques such as speculative execution [18]
and tiny tasks [35] can help with slow machines, they do not directly
address data or compute skew.

Hurricane supports task cloning by combining two novel techniques:
fine-grained independent access to data and programming model
support for merging. These techniques enable writing high-perfor-
mance, skew-resilient applications with minimal programmer effort.

Fine-grained data access enables workers1 executing tasks to com-
pute on small partitions of any input or intermediate data inde-
pendently of other workers, allowing fine-grained, on-demand task
cloning. To support this design, Hurricane stores all input and inter-
mediate data in data bags. Each data bag corresponds to the input or
output of a task, and data is stored in fixed-size blocks, called chunks,
within bags. A bag does not belong to a worker; rather all workers
executing clones of the same task share the bag.

Hurricane supports combining the partial outputs of cloned tasks
using an application-specified merge procedure whose output is
equivalent to the output of a single uncloned task. Our merging
paradigm is more general than the traditional shuffling and sorting
method for combining outputs from different partitions. It not only
alleviates the need to sort, but also allows for data records associ-
ated with the same key to be simultaneously processed on multiple
nodes, providing more flexibility to balance load across partitions
in the presence of key skew. We provide further justification for our
approach in Section 6.

Efficient cloning of tasks requires good data placement to avoid
increasing storage load on overloaded nodes. For example, if all the
data is co-located with the node executing a task, cloning to shed
load from that node will require redistributing the data. This can add

1A worker is a container executing a task on a node.

further strain on that node, potentially leading to a storage bottle-
neck. Hurricane avoids this problem by spreading the chunks in data
bags uniformly randomly across all nodes in the cluster, and allows
retrieving efficiently them using a decentralized scheme. This ap-
proach achieves high cluster-wide storage utilization and throughput,
thus ensuring that cloning does not lead to storage bottlenecks.

We have implemented several typical analytics applications on Hur-
ricane. We evaluate the system on a cluster of 32 machines that
are connected by a high-speed network. We show that Hurricane
achieves load balance and scales with the number of machines in
the cluster, the input data size, and the amount of skew. We observe
a slowdown compared to uniform partitions of at most 2.4× in a
click counting application in the presence of 64× imbalance between
partitions. Hurricane can execute skewed hash joins 18× faster than
Spark, while keeping the performance degradation with high skew
below 2.3×, and outperforms Spark’s GraphX [45] by calculating
PageRank on real-world graphs 5-10× faster.

The contributions of this paper are four-fold. We present the first
analytics system designed to systematically perform adaptive parti-
tioning of work based on observed load during execution, allowing
it to improve application runtime by optimizing parallelism and
providing load balance for both compute and storage resources. We
demonstrate how to implement such a system through a fine-grained,
adaptive partitioning scheme based on a task cloning abstraction. We
propose a storage architecture which maximizes storage utilization
and throughput while allowing workers to efficiently and indepen-
dently access data. We demonstrate the performance of our system
for several typical analytics workloads.

The rest of the paper describes our approach in detail. Section 2
describes the Hurricane programming model, and then, Section 3
presents the design of our system. Section 4 describes the implemen-
tation. Section 5 evaluates the performance of Hurricane on typical
analytics workloads. Section 6 discusses and compares the related
work in the area, and finally Section 7 provides our conclusions.

2 PROGRAMMING MODEL

Hurricane supports a dataflow application model. To achieve good
parallelism and load balance even in the presence of high skew, Hur-
ricane clones tasks based on observed load at any point during their
execution. This requires programming model support, specifically
the ability for multiple workers to share data within a partition, as
well as the ability to reconcile multiple partial outputs into a single
consistent output.

2.1 Application Model

Hurricane applications are specified as a directed graph of tasks,
shown as circles, and data bags. The edges in the graph represent
the flow of data between tasks and bags, i.e., the outputs of bags
are connected to the inputs of tasks, and the outputs of tasks are
connected to the inputs of bags.

Executing the application graph creates an execution graph, where
nodes in the cluster execute the various tasks on local workers. A

Rock You like a Hurricane: Taming Skew in Large Scale Analytics EuroSys ’18, April 23–26, 2018, Porto, Portugal

...

Phase 1

Phase 2

clicklog.txt

region.usa

region.uk

region.china

...

distinct.china

distinct.uk

count.usa

count.china

count.uk

Phase 3

...

distinct.usa

Figure 1: ClickLog computation graph.

clicklog.txt

region.usa

region.uk

region.china distinct.china

distinct.uk

distinct.usa.clone1

distinct.usa distinct.usa count.usa

count.uk

count.china

Phase 1 Phase 2 Phase 2 merge Phase 3

Figure 2: A possible ClickLog execution graph on 4 nodes. Hurricane
automatically cloned the phase 1 task as well as the phase 2 task for the
USA region. Note that cloning a phase 2 task requires the introduction
of a corresponding merge.

worker can either execute a task or a clone of a task. The system
ensures that tasks only start once their corresponding input bags are
ready.

The Hurricane framework may at any point decide to clone a task to
increase parallelism and ensure faster completion. Cloning tasks is
entirely managed by the system. When partial outputs from clones
must be reconciled, the application specifies a merge procedure to
combine them. If no such procedure is specified, Hurricane simply
concatenates the outputs of all clones.

Figure 1 shows the graph topology of a typical Hurricane application
called ClickLog that operates on a log of clicks on advertisements
to count the number of unique IP addresses from each geographic
region. This application uses three types of tasks, whose pseudo-code
is shown in Figure 3. Phase 1 tasks map the source bag, containing
the click log, into per-region output bags, Phase 2 tasks list the
unique IP addresses in each region bag, and Phase 3 tasks count the
size of the list.

Figure 2 shows a possible execution graph using 4 nodes. All workers
execute tasks or cloned tasks, shown using dashed lines. In this
example, the number of clicks on advertisements per region can vary
significantly, causing skew in the tasks. As a result, Hurricane may
decide to clone some tasks. For example, Phase 1 has one original
worker executing the task and 3 clones. A task and its clone run the
same code. The Phase 2 task operating on the USA region has two
workers associated with it (the original worker and a clone). Phase
2 requires a custom merge, which is executed after all associated
workers finish. Note that different tasks (not clones) may also run the
same code. For example, Phase 3 has three different tasks, running
the same code, but with different input bags.

Phase 1 task (input, outputs):
while ip = input.remove() not empty:
region = geolocate(ip)
outputs[region].insert(ip)

Phase 1 merge (partial1, partial2, output):
output = concat(partial1, partial2) // default merge

Phase 2 task (input, output):
let distinct be a bitset
while ip = input.remove() not empty:
distinct |= ip // set corresponding bit to 1

output.insert(distinct)

Phase 2 merge (partial1, partial2, output):
output.insert(partial1 | partial2)

Phase 3 task (input, output):
output.insert(len(input))

Phase 3 merge (partial1, partial2, output):
output.insert(partial1 + partial2)

Figure 3: ClickLog application code.

2.2 Dynamic Fine-grained Data Sharing

Multiple workers (clones) executing the same task on the same input
data require a way to obtain disjoints subsets of the data. Since
Hurricane may adjust the number of clones dynamically during task
execution, workers should be able to independently and efficiently
access finer-grained partitions of the data dynamically at runtime.

Hurricane achieves fine-grained data sharing through a data bag
abstraction that workers use to store data and communicate with
each other. Each data bag contains fixed-size blocks of data called
chunks that are stored in files in our distributed storage service.

Data bags expose two main operations: Bag.insert(chunk) and
Bag.remove(). The first operation inserts a chunk into the bag.
The second operation removes a chunk from the bag and returns it to
the caller. The bag abstraction guarantees that each chunk in the bag
is returned exactly once, ensuring that a chunk is processed once (by
some task clone). The remove operation fails when a bag is empty,
allowing a worker to terminate.

A worker serializes its application-specific data records into a chunk
before inserting it into a bag. Similarly, after removing a chunk,
it deserializes the chunk into its data records. Hurricane provide a
number of typed iterators for serializing and deserializing common
formats (integers, floats, strings, tuples, etc.), which can be com-
bined to represent more complex data types (e.g., nested tuples). All
serializers ensure that data records do not cross chunk boundaries,
thus allowing chunks to be processed independently.

Data bags differ from files in that they allow multiple workers to
concurrently insert or remove chunks from the same bag without
interference. For instance, in Figure 2, the two workers processing
the Phase 2 for the USA region read chunks from the same bag
(region.usa). This property derives from the use of chunks as the
basic indivisible unit of data used by workers. Data bags also support
data processing at varying speeds by forcing workers to request
individual chunks instead of being assigned key ranges upfront. This
late binding of data chunks to workers is essential to handle skewed
workloads as it makes it possible to dynamically partition the data
during task execution.

EuroSys ’18, April 23–26, 2018, Porto, Portugal L. Bindschaedler et al.

2.3 Dynamic Merge-based Task Sharing

Multiple workers (clones) executing the same task on different sub-
sets of the same input data may need a way to reconcile their partial
outputs into a coherent single output. Ideally, workers should be able
to process subsets of the data in isolation, and produce individual
outputs that can be merged to produce the final output.

Hurricane merges partial outputs through a (possibly null) merge
procedure. Some tasks can support multiple workers without any
additional merging effort. Examples of such tasks include prepro-
cessing, map tasks (from MapReduce), filters, selects (in SQL), etc.
In such cases, it is sufficient to concatenate the chunks produced
by each worker into the output bag. In the ClickLog example, this
is what happens if multiple workers execute Phase 1. Other tasks
however require support for merging the partial results of the con-
current workers. Examples of such tasks include reduce tasks (from
MapReduce), counting, sketches [16, 22], groupby, etc. In the Click-
Log example, this is the case for tasks in Phases 2 and 3. Often,
tasks requiring a merge must produce output satisfying some con-
straints (e.g., sorted result, aggregation). As a result, an intermediate
merge is required to ensure output consistency. Since merging is
application-specific, if the task requires a merge, we require the
programmer to specify a merge procedure as part of the code for that
task.

Specifying a merge procedure amounts to defining a function to com-
bine two partial outputs into one. This merge procedure is relatively
easy to write. In most cases, it is of similar complexity as writing
a merge combiner in Spark. However, unlike merge combiners, the
merge operation is more general. Among other things, non aggre-
gation outputs can be merged, for instance through a merge sort.
The merge operation also supports non commutative-associative
operators (e.g., unique counts, medians, duplicates removal). For
convenience, Hurricane provides a library of typical merge opera-
tions.

3 DESIGN

Figure 4 shows the architecture and typical deployment of Hurricane.
A Hurricane cluster consists of a set of compute and storage nodes.
The cluster administrator provisions nodes for use by Hurricane,
either manually or through a resource manager, such as YARN [44].
The compute and storage nodes may be co-located, but are provi-
sioned independently. Then each storage node starts a Hurricane
server, and each compute node starts the Hurricane framework and
is configured so that it knows the list of storage nodes. The compute
nodes run tasks on local workers. Each compute node runs on one or
more cores, and workers can be multi-threaded. The storage nodes
store all bags spread across the nodes. These bags can be of two
types: data bags (DB) and work bags (WB). Work bags are used to
schedule tasks.

3.1 Execution Model

Each Hurricane application is associated with an application mas-
ter that runs on one of the compute nodes. The master drives the

Hurricane
Framework

Compute Node

Worker

Worker

Compute Node

Worker

Worker

Compute Node

App Master

Worker

High Speed Network

Storage Node
DB1

DB2

WB2

Storage Node
DB1

DB2

WB1

Chunk

Task

Storage Node
DB1

DB2

WB1

Task Manager

Hurricane Server Hurricane Server Hurricane Server

Hurricane
Framework

Hurricane
Framework

Task Manager Task Manager

Figure 4: The Hurricane Architecture. Although logically separated,
compute nodes and servers can be co-located.

application’s computation by invoking functionality in the Hurri-
cane framework. In addition, it monitors application progress, and
facilitates the implementation of policies for cloning and resource
management. The master is a lightweight component as it relies on
distributed work bags to perform most of its functions.

Upon starting, the application master creates a task manager on
each compute node that is responsible for executing tasks on local
workers. The application master then reads the application graph and
schedules tasks for execution. Each task consists of a task blueprint,
containing a unique task identifier and the code necessary to execute
the task, as well as the identifiers of its input and output bags.

The master maintains the application’s progress in the execution
graph and schedules new tasks once all the source bags for a task
have completed. The overall execution ends once there are no more
tasks to be scheduled and no more tasks are being executed.

This execution model ensures that once an input bag becomes empty,
it will remain empty, and thus workers know when they are done.
For example, in Figure 1, the application master schedules the Phase
1 task, and only when it is finished, schedules all the Phase 2 tasks.
Since Phase 3 tasks only depend on the bag containing the distinct
list for their respective region, they can be scheduled immediately
after the corresponding Phase 2 tasks finish. This simple model
suffices for our batch analytics workloads, although we plan to
explore more sophisticated dataflow execution models for streaming
workloads [32].

3.2 Task Cloning

The application master automatically clones tasks on behalf of the
application by modifying the execution graph to add a copy of
the cloned task that reads from the same input bag as the original

Rock You like a Hurricane: Taming Skew in Large Scale Analytics EuroSys ’18, April 23–26, 2018, Porto, Portugal

task, as well as (possibly) a merge task. When the task requires
a merge, we add a merge task to the execution graph, when the
first clone is created. Then, for each clone, the master creates a
new bag dependency between the clone and the merge task. Once
all the clones complete, we execute the merge task to produce the
reconciled output.

Hurricane has two design goals when cloning tasks: automatically
adjusting parallelism at runtime with minimal programmer effort,
and minimizing the overhead of executing a task on multiple work-
ers. These goals present a trade-off between responsiveness to load
imbalance, and the cost of cloning and merging of results.

Dynamic Parallelism. Hurricane clones a task repeatedly until it
either runs on every compute node or the system determines that it
already benefits from a sufficient degree of parallelism. The applica-
tion master makes cloning decisions based on two criteria: 1) load
information that helps detect task load imbalance, and 2) a cloning
heuristic that determines whether cloning will benefit task execution
time.

Hurricane detects load imbalance by monitoring two resources
throughout the execution of a task: CPU load and network usage.
If a worker experiences high CPU load for a prolonged period of
time or its network interface is saturated, this is an indication that
the worker is experiencing overload, and we should re-evaluate the
degree of parallelism in that task. The master then clones the task
on an idle compute node if one is available and the cloning heuristic
allows cloning, as discussed below.

Hurricane clones a task worker repeatedly until it is no longer over-
loaded, thus increasing task parallelism only as needed.

Note that Hurricane need not monitor for storage bottlenecks because
the storage system is designed to provide the maximum possible
bandwidth to applications, and therefore running at peak storage
bandwidth is the best case scenario.

Cloning Heuristic. Hurricane only clones a task when it expects that
cloning will improve task execution time. Cloning introduces two
costs that may require additional computation and IO: 1) loading
task state in a new clone, and 2) merging of clone outputs, which in-
troduces an additional dependency in the execution graph. Hurricane
estimates these costs to avoid cloning close to task completion.

Consider the ClickLog example from Figure 1. When a Phase 1
worker is overloaded, the application master will always clone the
task since it has minimal state and does not require a merge. This pro-
cess will repeat for each worker in Phase 1 until the task completes
or there are no more idle compute nodes. In contrast, when a Phase
2 worker is overloaded, the heuristic may reject cloning if the task
is close to completion because the overhead of merging outweighs
the benefits. The heuristic may also determine that it is worthwhile
cloning, when the task runs for a long time, as in the region.usa
case. If so, the master performs task cloning by scheduling a copy
of the task on an idle node, as it would any other task, and adds the
corresponding merge task to the execution graph.

3.3 Storage Architecture

Task clones require efficient and fast access to their subsets/partitions
of the input data. This requires careful data placement or else storage
can become a bottleneck. For instance, placing all task data on the
node executing the task will likely cause that node to experience
additional pressure due to data redistribution if its task is cloned.

The bag abstraction, which exposes all data to workers as a dis-
tributed storage service, helps avoid storage bottlenecks. Hurricane
decouples computation from data, storing data on storage nodes,
while processing is performed on separate compute nodes. We lever-
age this decoupling to achieve near-perfect storage utilization and
throughput by uniformly spreading the chunks in data bags across all
storage nodes, disregarding any locality concerns. We access these
chunks using an efficient and low-latency decentralized scheme, and
ensure high storage utilization by prefetching chunks using a batch
sampling strategy.

Data Placement and Access. The data bag abstraction alleviates
the need for workers to choose the nodes on which to place data,
or to redistribute data when a new worker is created. The insert
chunk operation on a data bag writes the chunk in a pseudorandom
cyclic order across the storage nodes. Spreading the chunks across
the storage nodes helps improve insert throughput. Similarly, the
remove operation by a worker requests a chunk in a pseudorandom
cyclic order across storage nodes. If it does not find a chunk at the
node, it tries the next storage node in the cyclic permutation. When
a bag contains many chunks that are spread across all the storage
nodes, then the first probe will succeed. As the bag gets close to
empty, we require more probing.

Storage Load Balancing. Workers can independently request any
chunk in a bag from any storage node and they can insert a chunk
at any storage node. This decentralized approach reduces latency,
but can lead to load imbalance across storage nodes. In the absence
of any coordination between workers accessing the storage nodes,
these nodes may have significant load imbalance, with some nodes
sitting idle, while others are accessed heavily.

Hurricane uses batch sampling to ensure high storage utilization.
We borrow this idea from decentralized scheduling for data-parallel
jobs [31, 38], and recent work on specialized analytics on secondary
storage [41]. In this scheme, each compute node sends requests to
a fixed number b of different storage nodes concurrently. As these
nodes become idle, they respond to a remove request by sending data
from the bag to the compute node, or by performing the requested
bag insertion.

We choose the number of outstanding requests from a compute node
such that for m storage nodes, there are always bm outstanding stor-
age requests. We can easily derive a lower bound on the utilization
of each storage node in this setup. The probability that a node is
not sent a request is (1 − 1

m)bm . Therefore the expected utilization
of a storage node is simply the probability that it is busy, which is
the same as the probability that at least one compute node sends a

EuroSys ’18, April 23–26, 2018, Porto, Portugal L. Bindschaedler et al.

request to it:

ρ(b,m) = 1 − (1 − 1
m
)bm (1)

The ideal utilization is one (100%). With b = 1 outstanding requests,
the utilization is at least 63%, with b = 2, the utilization is 86%, and
with b = 3, the utilization is 95%. In practice, we pick b = 10, which
ensures over 99% utilization even for thousands of storage nodes.
Hurricane ensures that at most b concurrent requests are in progress
at each compute node. This also serves as a simple flow control
scheme to avoid overwhelming the storage nodes.

Batch sampling also helps reduce the latency associated with remov-
ing items from bags that are close to empty. This latency is roughly
m ·L
b , where L is the round-trip latency of a single probe operation.

3.4 Adding and Removing Nodes

Hurricane allows dynamic addition and removal of compute and
storage nodes from an application. This is easy to support for two
reasons: 1) data is stored at storage nodes, separately from compute
nodes, and 2) the compute nodes run independently of each other.

The application master can add and remove compute nodes at any
point during job execution to accommodate variations in load. A
compute node is added by starting the Hurricane framework and
configuring the framework with a list of storage nodes, and starting a
task manager on the node. A compute node is removed by stopping
its task manager after its current workers have completed.

The application master may also add or remove storage nodes during
job execution. A storage node is added by starting a Hurricane server
on the node. The application master then informs the compute nodes
about the new node, allowing workers to place data there. When
a storage node is removed, it stops accepting insert requests while
still allowing remove requests. When all its bags become empty, the
node can be removed.

3.5 Assumptions and Limitations

Since Hurricane spreads data across all storage nodes, without con-
sidering locality, an underlying assumption in our design is that
the network is not a critical bottleneck in the system. This require-
ment is met by many analytic workloads and deployments today.
Recent work has shown that for many workloads, the network is not
the bottleneck, and its effect is mostly irrelevant to overall perfor-
mance [14]. This is because much less data is sent over the network
than is accessed from disk [36]. Our storage system is designed to
optimize the latter bottleneck. While our approach increases network
communication, network interface speeds today are easily able to
keep up with storage bandwidth. A 10 GigE interface can easily sup-
port modern disks as well as fast SSDs, and 40 GigE networks are
becoming more common. Thus, we expect that network endpoints
will not be a bottleneck in our deployments. Similarly, high bisection
bandwidth is available at rack scale today, and many clusters are
deployed at these scales. For example, in 2011, Cloudera reported
a median cluster size of 30 and a mean of 200 nodes [1]. Similarly,

many Hadoop clusters have 100-200 nodes [2]. For larger installa-
tions, data-center scale full bisection bandwidth networks are being
actively researched [33] and deployed [13].

Hurricane does not currently provide a mechanism for speculative
execution [18]. We do not attempt to speculatively restart crashed,
hung or slow tasks on compute nodes. Crashed or hung tasks will
eventually be detected by the application master and will be killed
and restarted then. Cloning successfully mitigates stragglers, as slow
tasks will eventually be cloned, but this is not done speculatively.
We leave the implementation of speculative cloning as future work.

4 IMPLEMENTATION

This section describes the implementation of the various components
in Hurricane.

4.1 Task Scheduling

Hurricane minimizes the overhead of task cloning by performing
efficient low-latency scheduling through a reliable, distributed task
queuing interface called work bags. Work bags are similar to data
bags and expose the same interface, except they contain tasks, not
chunks. Compute nodes remove tasks (including cloned tasks) from
work bags to execute on local workers. Similar to data bags, tasks
in work bags are distributed across all storage nodes and accessed
by compute nodes independently without any single point of con-
trol. Unlike traditional scheduling queues, work bags are unordered,
allowing for fast decentralized access to their contents.

Each application has three work bags associated with it, a ready
bag, a running bag, and a done bag, corresponding to the ready,
running, and exited, task states. Compute nodes remove tasks from
the ready bag to create workers. Workers execute application code
by removing fixed-size chunks from one or more input data bags,
computing on the chunks, and then inserting transformed chunks in
one or more output data bags. When a worker finishes executing,
it inserts its task identifier in the done work bag. The application
master monitors the done bag and inserts tasks into the ready bag
once their dependencies have been completed. The running work
bag is used for handling compute node failures.

4.2 Task Cloning

By default, Hurricane runs a single worker for an input bag. At
any point, each compute node can signal the application master
that it is overloaded and would like a particular task to be cloned
to alleviate load. The application master may accept or ignore the
cloning request based on a cloning heuristic. We now consider the
implementation of overload detection and the heuristic for cloning.

Detecting Overload. A task overload can occur either when the
task is CPU bound or IO bound. For detecting a CPU bound task,
we need to simply measure the CPU load on the machine. An I/O
bound task could be limited by the disk or the network. Since we
distribute the data in a bag across storage nodes, a disk-bound task
will maximize storage bandwidth, helping us achieve our goal of

Rock You like a Hurricane: Taming Skew in Large Scale Analytics EuroSys ’18, April 23–26, 2018, Porto, Portugal

improving the performance of large datasets with skew. Assuming
high bisection bandwidth, a network bottleneck may occur when
a node is limited by its endpoint bandwidth. We can detect such a
bottleneck by measuring the network throughput at each node. As a
result, a compute node generates a clone message periodically, when
the CPU or its local network interface is saturated. Currently, we
send clone messages at least 2 seconds apart.

Cloning Heuristic. Hurricane uses a simple heuristic to estimate
whether cloning a task is worthwhile, using the following quantities:
k is the number of clones processing a task, T is the expected time
to finish the task without cloning, TC is the expected time to finish
the task with cloning, TIO is the expected additional I/O time due
to cloning, i.e. the time to read and load additional task state and
the time to merge the clone’s output data. It follows that TC =
k

k+1T +TIO .

Given the above quantities, Hurricane clones a task if TC < T , i.e.
k

k+1 ·T +TIO < T , which simplifies to:

T > (k + 1) ·TIO (2)

In other words, cloning is worthwhile when the time to finish the task
without cloning is greater than the product of the number of clones
and the I/O time resulting from cloning. For example, assume a task
is expected to finish in 10 seconds with 4 clones, and the clones are
overloaded. Adding a fifth clone brings down the completion time to
8 seconds. So the cloning overhead cannot be more than 2 seconds,
or else it will likely delay task completion. The cloning heuristic
avoids cloning close to the end of a task, and so we only need a
rough estimate of these quantities.

The value of k is known by the application master. T is estimated by
sampling the input bag on a few storage nodes to estimate how much
data is left and how fast it is emptying. While TIO is application-
specific, we estimate it as two times the size of the remaining portion
of the input bag that the task will read (for input and output).

4.3 Storage Nodes

Storage nodes provide storage for data bags, and work bags. Data
bags bear a resemblance to files stored in distributed file systems
like HDFS [43]. In fact, data bags are implemented at each storage
node as Linux ext4 regular (buffered) files. A chunk insert request
simply appends the chunk to the file associated with the bag. The
append operation is atomic, ensuring that concurrent inserts are
performed correctly. The insert operations are performed in FIFO
order. A remove operation is implemented by reading a chunk from
the file sequentially, which increments the file pointer and ensures
that the same chunk is never returned again. An end-of-file indicates
that all chunks have been removed from this node. The bag API,
similar to files, includes other operations, including reusing the
contents of a bag, allowing multiple workers to read an entire bag
concurrently, sampling the amount of data remaining in a bag, and
garbage collecting a bag.

4.4 Fault Tolerance

Fault tolerance is specially important for complex application graphs
that must process large amounts of data.

The application master provides a single point of control for the ap-
plication’s execution. This component is application-specific, while
all other Hurricane components are application agnostic, and run
independently of each other. A consequence of this design is that
the crash of a compute node does not interfere or block any other
compute node from making progress, since compute nodes are not
aware of each other. Similarly, the crash of a storage node does not
prevent other storage nodes from serving/storing data. Hurricane
applications place all persistent state at the storage nodes, while com-
putes nodes contain only soft state. This approach allows us to use
a simple checkpoint-replay mechanism for handling compute node
failures, and primary-backup replication for storage node failures.

Application Master Failure. The application master is the only entity
that knows about the state of the computation. However, this state is
stored in its work bags that are stored on the storage nodes. When
the application master fails, we restart it and replay the done work
bag. Replaying the done work bag involves rereading the entire bag,
taking note of each completed task to update the execution graph.
Replaying these task completions lets the application master recover
the state of the execution graph to its pre-failure state. Once replay
completes, the application master resumes normal operation. Neither
compute nodes nor storage nodes need to be aware of an application
master failure and can continue to execute tasks normally.

Short-lived application master crashes will not usually cause applica-
tion slowdown as compute and storage nodes can proceed indepen-
dently of the application master, because the latter is only required
to schedule new tasks or to clone existing tasks. Nonetheless, cluster
operators may opt to replicate the application master using Apache
ZooKeeper [26] for increased resilience to failures.

Compute Node Failure. When a compute node fails, the application
master restarts all currently running tasks on the node. To do so,
it scans the running work bag for all tasks that the compute node
was currently executing. It then terminates all running clones of
these tasks. Next, it discards data in the output bags and rewinds the
input bags of these tasks, and finally reschedules them by moving
them back to the ready bag. From the application’s perspective,
restarting failed tasks from scratch enables maintaining the exactly
once invariant when reading data from input bags.

Our approach is simple to implement and reason about, but comes
at the expense of potential slow progress in the presence of many
failures. We leave the implementation of a more fine-grained recov-
ery approach to address compute node failures that avoids restarting
associated clones as future work.

Storage Node Failure. Hurricane protects the data stored on storage
nodes through primary-backup replication. Since data is spread
across all storage nodes, an application can tolerate n storage node
failures by using n + 1 replication. Each bag, including data and
work bags, is replicated along with bag state, such as the current

EuroSys ’18, April 23–26, 2018, Porto, Portugal L. Bindschaedler et al.

file pointer position from which the next chunk will be read. The
replication level is configurable for each application. In the event of
a storage node failure, the application master informs each compute
node to use a backup storage node. Compute nodes re-issue requests
to the backup storage node and proceed as usual.

Decentralized Control. In the current version of Hurricane, the ap-
plication master serves as a centralized control plane. On the other
hand, the data plane is fully decentralized. While we do not fore-
see any scalability bottlenecks as a result of this decision, we leave
the implementation of a decentralized application control plane for
future work.

4.5 Software and Configuration

Hurricane is written in Scala and runs on a standard Java Virtual
Machine (JVM) version 8 [3]. The system and all benchmark ap-
plications are roughly 7000 lines of code. We use the Akka toolkit
(version 2.4) [4] for high performance concurrency and distribution.
We use TCP-based netty (version 4) [5] for inter-machine commu-
nication, but also support UDP-based Aeron (version 1.2) [6] for
high-throughput low-latency messaging. Due to observed instabili-
ties in Aeron, we opted for netty as the default.

We use reasonable defaults for all system parameters. In particular,
we do not tune the network stack, the storage subsystem or the JVM.

The chunk size is chosen to minimize the overhead of remote data
access, reduce internal fragmentation caused by small bags, and
minimize random accesses to disk. Our system uses a 4MB chunk
size.

5 EVALUATION

This section evaluates the performance of the Hurricane system and
compares it with the Hadoop (version 2.7.4) and Spark (version
2.2.0) systems. Our experiments show the effect of increasing skew
and input data size on the system. Then, we evaluate the various
design choices we made in Hurricane. Finally, we evaluate the per-
formance of three realistic applications.

We evaluate Hurricane on 32 16-core machines (2 Xeon E5-2630v3),
each equipped with 128 GB of DDR3 ECC main memory. The
machines have two 6TB magnetic disks arranged in RAID 0. The
RAID array sustains a bandwidth of approximately 330MB/s, as
reported by fio [7]. The machines are connected through 40 GigE
links to a top-of-rack switch which provides full bisection bandwidth.
We run no other workload on the machines to ensure that each system
can fully utilize the 128GB of main memory. We co-locate compute
nodes and storage nodes, and run one storage node per machine
using all available storage. We do not enable replication of bags
unless explicitly stated.

5.1 Taming Skew

We first evaluate how well Hurricane can deal with skewed work-
loads along two dimensions: increasing skew in the data, and in-
creasing input data size. To do so, we use the ClickLog application

Input size 320MB 3.2GB 32GB 320GB 3.2TB

Runtime 5.7s 8.9s 22.8s 90s 959s

Table 1: ClickLog runtime over a uniform input (baseline). The total
size of the input is scaled from 320MB to 3.2TB of total input.

presented in Section 2.1. This application is representative of many
analytics workloads, such as the MapReduce paradigm that trans-
forms input data before aggregating it along some dimension.

The input takes the form of text files uniformly distributed across all
storage nodes. Each input line contains an IP address. The output is
the count of the number of unique IP addresses in each geographic
region. We simulate the geolocation function to avoid external API
calls.

For the evaluation under skew, we normalize the skew runtimes with
the corresponding runtimes for uniform inputs. Table 1 establishes
the baseline ClickLog runtimes on uniform inputs with increasing
size. We start with 320MB (10MB per machine), and multiply the
size by 10 until the input size is 3.2TB (100GB per machine). At
10MB, 100MB, and 1GB per machine, the experiment runs from
memory and the performance scales sub-linearly due to execution
overhead. The 320GB (10GB per machine) and 3.2TB (100GB
per machine) runs execute from disk and scale almost linearly at
aggregate disk bandwidth.

To evaluate performance in the presence of skew, we use a synthetic
input generator that takes two parameters: input size and skew. We
use a zipf distribution with parameter s (0 ≤ s ≤ 1) to obtain
different amounts of skew. Then we generate partitions by dividing
the key range into equal parts, so that adjacent keys are placed in
each partition.

We show how increasing the skew affects Hurricane. We introduce
increasing skew in the input data using skew parameter s, with values
0 (uniform), 0.2 (mild skew), 0.5 (medium skew), 0.8 (medium high
skew), and 1 (high skew). The corresponding imbalance between the
largest and smallest region is 1×, 2.3× , 8×, 28×, and 64×.

Given s = 1, the largest region makes up 19.6% of the total input.
Using Amdahl’s law, and assuming that the largest region is the
serial (non parallelizable) fraction of the parallel execution and that
processing requirements are uniform, we can estimate that the maxi-
mum achievable speedup in this scenario is 4.5× when the largest
region is not broken up. When using 32 machines, this corresponds
to a best case slowdown of 7.1× (32/4.5).

Figure 5 shows Hurricane’s slowdown with increasing skew and
input sizes. We observe that Hurricane suffers at most 2.4× slow-
down across all configurations and significantly less in most cases.
By spreading data chunks across all storage nodes and cloning tasks
processing large regions to split the work at runtime, Hurricane
achieves a much better slowdown than 7.1×.

In Figure 5, the normalized runtime increases with increasing skew
due to task cloning and merging overheads. Tasks are cloned every
two seconds, and so it takes some time until all compute nodes are
busy (e.g., in Phase 1). The merge operation introduces overheads

Rock You like a Hurricane: Taming Skew in Large Scale Analytics EuroSys ’18, April 23–26, 2018, Porto, Portugal

 0

 1

 2

 3

 4

10MB 100MB 1GB 10GB 100GB

R
u
n
ti
m

e
 n

o
rm

.
to

 r
u
n
ti
m

e
 o

n
 u

n
if
o
rm

Input/machine, skew

uniform
s=0.2
s=0.5
s=0.8
s=1.0

Figure 5: ClickLog runtime with increasing skew.

because it reconciles the partial outputs of clones after their execu-
tion. There is no task cloning (and therefore no merging) for the first
two input sizes (10MB and 100MB). These experiments run fast due
to the small input size, and have little overhead caused by skew. The
third input size (1GB) experiences some task cloning in the presence
of skew. In the worst case (s = 1), this overhead is 0.24×, of which
63% is due to cloning delays, and the rest is from merging partial
outputs. Experiments for the 10GB input size lead to a significant
amount of task cloning for large skew (s = 0.8 and s = 1). The worst
case overhead is 0.38×, of which 39% is due to cloning delay in the
first phase, and the rest is from merging partial outputs. Figure 9
shows these effects by plotting the sustained throughput over time
when the skew s=1, for 10GB input size. Note that as the input
sizes becomes larger, the application executes for a longer time, and
therefore the relative overhead due to cloning delay decreases.

The largest input size (100GB) suffers from the largest overhead
across all experiments, 1.4× for s = 1. Unlike smaller input sizes,
half of this overhead is due to desynchronized garbage collection
pauses at storage nodes, which prevents the system from achieving
peak I/O throughput [30]. We are actively looking into this problem,
and expect our solution to bring the overhead down to similar levels
as that of smaller input sizes.

5.2 Design Evaluation

Varying Partition Sizes. We now evaluate how decreasing the parti-
tion size, i.e., creating more tasks of smaller sizes, and scheduling
them statically without cloning affects the runtime for a skewed
workload. To that end, we run Hurricane with and without cloning
(dubbed HurricaneNC) on a 32GB input with skew parameter s = 1.
We increase the number of partitions from 32 to 4096 so that the
average task size decreases with more partitions. The average task
size with 32 partitions is 1GB, whereas with 4096 partitions, it is
8MB (comparable to the chunk size).

Figure 6 shows the results for this experiment. We break down the
runtimes of each phase. The first phase buckets the IP addresses into
regions, the second phase uses a bitset to list unique IP addresses,
while the third phase counts the size of the bitset. Hurricane starts
with a single worker in Phase 1, which it can clone based on load

 0

 2

 4

 6

 8

 10

32 64 12
8

25
6

51
2

10
24

20
48

40
96

32 64 12
8

25
6

51
2

10
24

20
48

40
96

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e
 t
o
 u

n
if
o
rm

System, partitions

Phase 1
Phase 2
Phase 3

HurricaneHurricaneNC

Amdahl

Figure 6: HurricaneNC (no cloning) and Hurricane with increasing
number of partitions on an input of 32GB with skew s = 1. Dashed
lines represent the best case slowdown using Amdahl’s law.

conditions, while HurricaneNC always runs a single worker per task
since it does not clone workers. To ensure a fair comparison for
HurricaneNC, we split the Phase 1 input into equal-sized partitions
such that each compute node is assigned at least one partition of the
input.

There is no skew in Phase 1, and thus the size of tasks has little
impact on the phase’s runtime. We observe that Hurricane takes a
little longer to complete Phase 1 because it starts the phase with a
single worker, and cloning on demand introduces some delay for
detecting overload. However, the benefit of Hurricane’s approach
is that the application does not need to specify the correct number
of clones. Phase 2 has significant skew and here we observe how
cloning reduces the phase’s runtime, even though it comes at the
expense of a merge. Hurricane can parallelize the processing of
large partitions through cloning, whereas HurricaneNC’s runtime is
dominated by the time it takes to process the largest partition on a
single worker. Phase 3 runs very quickly as it does little work.

We plot the best case slowdown as computed in Section 5.1 in dashed
lines as a reference. We observe that HurricaneNC’s performance
closely matches the curve whereas Hurricane clearly stay below. The
shape of the results for HurricaneNC indicate that its speedup be-
comes less significant every time we double the number of partitions
until eventually it cannot achieve a better runtime.

We conclude from these results that smaller partitions alone are
insufficient for addressing skew: even though the average partition
size decreases, large partitions remain comparatively large. In the
absence of cloning a single worker must process the largest partition
sequentially, and so the system cannot fully leverage the presence
of more tasks to achieve better load balancing. Finally, we observe
that creating too many small partitions introduces scheduling and
storage overheads, as evidenced by the increase in runtime for Phase
1 for both systems.

Cloning and Spreading. We now seek to evaluate which feature of
Hurricane works best to address skew, and in particular whether both

EuroSys ’18, April 23–26, 2018, Porto, Portugal L. Bindschaedler et al.

cloning and spreading data across storage nodes are necessary for
good performance. We only present the runtime for the first two
phases, since the third phase runs for a short time.

We consider four configurations of Hurricane with different features
turned off:

• Configuration 1: Cloning Off, local data. Cloning is disabled.
We create one task per bag, i.e. one task for Phase 1 and r tasks
for Phase 2 (where r is the number of regions). Phase 1 task
input is on local disk and its output data is written locally. Phase
2 tasks read their input data from remote machines in parallel.

• Configuration 2: Cloning Off, spread data. Cloning is disabled.
We create the tasks as before. All data (including initial input) is
spread.

• Configuration 3: Cloning On, local data. Cloning is enabled. We
create one task per bag as before, but the system can clone both
Phase 1 and Phase 2. Data is placed as in Configuration 1.

• Configuration 4: Cloning On, spread data. Cloning is enabled,
as in Configuration 3. All data (including initial input) is spread.

We run the ClickLog application on 8 machines in each of the above
four configurations with 80GB of input data (10GB per machine).
Figures 7 and 8 show the results for Phase 1 and Phase 2 respectively.
Phase 1 is not impacted by skew since each IP is geolocated and
placed in the corresponding region bag independently. We observe
that spreading data in the bag is essential for good performance as
local data places the burden of serving that data on a single storage
node. For instance, with local data, turning cloning on only speeds
up Phase 1 by 25% because, even though the output of clones is
placed on local storage, one machine must still supply the entire
input. Figure 8 shows that Phase 2 is severely impacted by skew, as
shown in the first configuration. Spreading the data improves perfor-
mance by 33% (second configuration) because it helps achieve better
storage load balance, allowing the machine processing the heaviest
region to use all disks when it is the last task remaining, effectively
increasing its storage bandwidth. Cloning with local data (configura-
tion 3) is slower than cloning with data that is spread (configuration
4) because clones are introduced with a delay, hence the output is
not uniformly distributed across all nodes if it is kept local. Finally,
we observe that cloning has the most impact with increasing skew
since it allows the heaviest region to be simultaneously processed
by multiple workers.

Locality. One might wonder whether Hurricane takes a performance
hit by spreading data uniformly in the absence of skew. As we can
see from Figures 7 and 8, this is not the case in our deployment
because the network is fast enough to match storage bandwidth. As
a result, remote bandwidth is roughly the same as local bandwidth.

Overload Detection & Cloning Heuristic. Hurricane clones tasks to
rebalance load and increase parallelism for large tasks, allowing the
system to better utilize both CPU and storage resources. We evaluate
the effectiveness of our overload detection mechanism and cloning
heuristic with ClickLog running on 32 machines with 320GB input.
We set the skew parameter to 1 (high skew).

 0

 100

 200

 300

 400

 500

 600

c=off,local c=off,spread c=on,local c=on,spread

R
u
n
ti
m

e
 (

s
)

Configuration, skew

uniform
s=0.2
s=0.5
s=0.8
s=1.0

Figure 7: Runtime of ClickLog Phase 1 for different configurations
with various features turned off.

 0

 500

 1000

 1500

 2000

c=off,local c=off,spread c=on,local c=on,spread

R
u
n
ti
m

e
 (

s
)

Configuration, skew

uniform
s=0.2
s=0.5
s=0.8
s=1.0

Figure 8: Runtime of ClickLog Phase 2 for different configurations
with various features turned off.

Figure 9 shows the aggregate throughput achieved by all compute
nodes in the system sampled at one-second intervals. Phase 1 starts
with one worker executing the single task. Since the task is CPU
bound, it clones rapidly until all 32 machines are running clones
around the 15 second time point (the number of clones doubles
approximately every 2 seconds). There is no merge in Phase 1, and
all workers complete roughly at the same time.

Phase 2 then starts with one task per region, which together occupy
all available worker slots at compute nodes. As tasks associated with
small regions complete, their associated Phase 3 tasks are scheduled
and executed. When they finish, some compute nodes become idle
because there are no more available tasks, allowing compute nodes
processing larger regions to get higher storage bandwidth. This over-
loads their CPU, so they issue cloning requests to the application
master, which grants them on a case-by-case basis. Eventually, only
the largest region remains, with 26 workers simultaneously process-
ing it. Cloning stops beyond 26 workers because storage, and not the
CPU, becomes the bottleneck. As this region gets close to the end,
the application master rejects further cloning requests, as the merge
overhead would become larger than the benefits of cloning. Once

Rock You like a Hurricane: Taming Skew in Large Scale Analytics EuroSys ’18, April 23–26, 2018, Porto, Portugal

phase 1 phase 2

cloning ramp up

26 clones

in 1st region

32 clones extra cloning

rejected

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

A
g
g
re

g
a
te

 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (s)

merge

Figure 9: ClickLog throughput over time on 32 machines. The vertical
dashed line separates Phase 1 from Phase 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

b=1 b=2 b=3 b=5 b=10 b=16 b=32

R
u
n
ti
m

e
 n

o
rm

a
liz

e
d
 t
o
 b

=
1

Batching factor

Figure 10: Runtime of ClickLog Phase 1 on 32 machines for various
batching factors.

the region is processed, the outputs of each clone are combined by a
merge task, and application execution terminates.

It is worth pointing out that throughput remains nearly constant for
Phase 2 in spite of significant skew because the system clones tasks
on idle nodes when storage is not the bottleneck.

Batch Sampling. We consider the batch sampling technique pre-
sented in Section 3.3 and evaluate its impact on performance. Batch
sampling of chunks within bags performed by workers is a means for
ensuring that storage nodes remain busy throughout their execution
and that workers are not starved for data, essentially overlapping
computation and communication through prefetching of chunks.

We consider Phase 1 of ClickLog with various batching factor values,
from b = 1 (i.e. one chunk at a time) to b = 32 (i.e. one in-flight
request per storage node). Figure 10 shows that allowing workers
to prefetch multiple chunks is essential for good performance and
to keep storage nodes busy. However, prefetching too many chunks
(b = 32) is undesirable since it risks overwhelming storage nodes
and could lead to unfairness. b = 10 is the sweet spot, allowing us to
achieve 33% runtime improvements simply through better overlap-
ping of computation with storage I/O.

node crash

node crash

master crash

master crash

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120 140 160

A
g
g
re

g
a
te

 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (s)

phase 1 phase 2 merge

Figure 11: ClickLog throughput over time on 32 machines with
worker and application master crashes. The vertical dashed line sep-
arates Phase 1 from Phase 2.

Throughput and Storage Utilization. Hurricane storage nodes are
designed to scale storage I/O throughput observed by compute nodes
with increasing number of storage nodes. We verify that this is the
case by running a synthetic benchmark where each worker writes a
fixed amount of random data (100GB) and then reads the data back.
We start on one machine and then double the number of machines
until 32, thus doubling the aggregate amount of data stored in storage
nodes. The results indicate that Hurricane sustains maximum I/O
bandwidth, regardless of the number of machines involved. For
instance, we achieve 330MB/s read bandwidth with one machine
and 10.53GB/s read bandwidth with 32, an increase of 31.9× for 32×
more machines. Similarly, we achieve 327MB/s write bandwidth
with one machine and 10.39GB/s write bandwidth with 32, i.e. 31.7×
speedup. By increasing the number of storage nodes, applications
can scale throughput while maintaining high storage throughput.

Fault Tolerance. We evaluate the impact of compute node and appli-
cation master crashes on throughput. Figure 11 shows the aggregate
throughput over time for an execution of ClickLog on a 320GB
input using 32 machines (10GB per machine). We forcibly crash a
compute node twice: once during phase 1 and once during phase 2.
In each case, we also crash the application master 20 seconds after
recovering from the compute node crash. Compute node crashes
cause throughput to deteriorate temporarily, as the system must stop
all corresponding task clones and restart the crashed task. Since
phase 1 consists of a single task, the crash of the compute node
requires restarting all workers in the system. In phase 2, the same
crash only requires restarting all associated clones of the task (recall,
different regions have different tasks), and thus the throughput only
degrades by ∼ 25%. Application master crashes have little impact
on throughput for two reasons: the master’s recovery is extremely
fast (less than 1 second), and once tasks are placed in the work bag,
compute nodes can proceed independently of the master’s status.

EuroSys ’18, April 23–26, 2018, Porto, Portugal L. Bindschaedler et al.

5.3 Applications and Comparisons

Finally, we consider three workloads, representative of real-world
applications, described below. We compare the performance of Hurri-
cane on these workloads with optimized implementations in Hadoop
and Spark.

• ClickLog: count the distinct number of occurrences of each IP
address per region in a log of clicks on advertisements. This
application was presented in Section 2.

• HashJoin: given two relations and an equality operator between
values, for each distinct value of the join attribute, return the set
of tuples in each relation that have that value. This is a classic
problem in relational databases.

• PageRank: execute 5 iterations of the PageRank algorithm [39]
on a large real-world power-law graph. PageRank has many
real-world applications and is a well-known benchmark used in
graph processing systems. This is a multi-stage application.

ClickLog. We compare our ClickLog results with Hadoop and Spark
by evaluating each system’s performance under different levels of
skew.

The implementation of ClickLog in Hadoop maps parts of the in-
put text to the workers, which tokenize it, parse the IP addresses,
geolocates the IP address per region, and output intermediate lists
of IP addresses in each region. The reduce phase goes over the in-
termediate lists to perform a distinct count. Spark operates in much
the same way on resilient distributed datasets, mapping the input to
workers, tokenizing, geolocating by region, and counting distinct IP
addresses. Wherever possible, we use the same data structures and
perform the same operations for all implementations. In particular,
all implementations use bitsets to perform the distinct count.

We use HDFS [43] in the case of Hadoop and Spark. We make sure
that both Hadoop and Spark read their input data from the local disk
and write the much smaller output without replication. We also split
the job into enough tasks to ensure that Hadoop and Spark can utilize
all available cores in the cluster and have enough opportunities to
balance load. We try multiple values for the number of partitions
(ranging from 100 to 10000) and report the best runtime across all
configurations. We verify that no task was restarted because of a
crash during the execution.

Table 2 shows the runtime of all three systems on uniform inputs
for two input dataset sizes. The 320MB input is guaranteed to fit
in memory on a single machine even in the presence of high skew,
while the 32GB may not fit in a single machine due to Java runtime
overheads. All three systems (in particular Hadoop) experience some
overhead when executing on the small 320MB input as a result of
small task sizes.

Hurricane achieves lower overall runtimes because it does not need
to sort intermediate data, which allows better overlap between com-
putation and communication. Both Hadoop and Spark must sort
intermediate data to ensure key ranges do not overlap. However,
eliminating sorting in Hurricane does not come free, since the sys-
tem must perform an additional merge task for cloned tasks.

System 320MB 32GB

Spark 8.2s 32.4s
Hadoop 37.1s 50.3s
Hurricane 5.7s 22.8s

Table 2: ClickLog runtime over a uniform input for 320MB and 32GB
input sizes.

 0

 1

 2

 3

 4

 5

uniform s=0.2 s=0.5 s=0.8 s=1

R
u
n
ti
m

e
 n

o
rm

.
to

 r
u
n
ti
m

e
 o

n
 u

n
if
o
rm

Distribution

Hurricane
Spark

Hadoop

(a) 320MB

 0

 1

 2

 3

 4

 5

uniform s=0.2 s=0.5 s=0.8 s=1

R
u
n
ti
m

e
 n

o
rm

.
to

 r
u
n
ti
m

e
 o

n
 u

n
if
o
rm

Distribution

Hurricane
Spark

Hadoop

(b) 32GB

Figure 12: Comparison of Hurricane, Spark and Hadoop when the
skew is increased for input sizes 320MB and 32GB. A full bar indicates
that the execution did not terminate in under an hour and was forcibly
terminated. Negative bars indicate a crash.

Figure 12 shows the slowdown on all three systems as skew is
introduced in the input. To ensure a fair comparison, the runtime
for each system are normalized to its own runtime with the uniform
input.

We observe that both Hadoop and Spark suffer significant perfor-
mance degradation in the presence of skew, particularly as the input
size increases. Spark runs out of memory and crashes with highly
skewed tasks due to a hard limitation of 16GB placed on task mem-
ory. Hadoop suffers from a large increase in runtime due to the
impact of skew on a few reducers, forcing them to spill.

Rock You like a Hurricane: Taming Skew in Large Scale Analytics EuroSys ’18, April 23–26, 2018, Porto, Portugal

System
3.2GB ▷◁ 32GB 32GB ▷◁ 320GB
s=0 s=1 s=0 s=1

Hurricane 56s 89s 519s 1216s
Spark 81s 1615s 920s >12h

Table 3: HashJoin runtime for two different relation sizes and different
amounts of skew. s = 0 is uniform.

HashJoin. Table 3 shows the runtimes for two joins, one between
a small 3.2GB relation and a larger 32GB relation, and the second
between a 32GB relation and a 320GB relation, for both Hurricane
and Spark. For both joins, we introduce skew in the first (smaller)
relation, causing a much larger hit rate for some keys. The join in
Hurricane splits the smaller relation into 32 equal-sized partitions,
and sorts them in memory. It then creates 32 corresponding parti-
tions in the larger relation, and finally streams the larger partitions,
while the smaller partition is in memory, outputting matching keys.
Spark’s implementation proceeds in a similar fashion but with more
partitions to make sure all available CPU cores are used. We try
varying number of partitions (ranging from 100 to 10000) and report
the best overall runtime. As before, we ensure that input data is
read from the local disk and that there are no task crashes during
execution. We also disable output replication.

We can observe that Spark struggles with skew due to load imbalance
and that this effect worsens as the input size increases. The slowdown
is directly caused by a larger hit rate in some partitions. Hurricane
handles the situation more gracefully due to its ability to spread both
input and output across storage nodes as well as its ability to clone
the tasks containing keys with larger hit rate.

PageRank. Table 4 compares the runtime of PageRank in Hurricane
and Spark’s GraphX, a state-of-the-art graph-parallel library for
graph applications. We compare on different input sizes using 32
machines. We use the RMAT graph generator [15] to generate real-
world power-law input graphs, i.e. graphs whose degree distribution
is skewed. RMAT-24 has 16 million vertices and 256 million edges,
RMAT-27 has 128 million vertices and 2 billion edges, while RMAT-
30 has 1 billion vertices 16 billion edges.

PageRank is computed iteratively for 5 phases after an initializa-
tion phase. In each phase, each vertex in the graph sends its current
PageRank along outgoing edges to neighboring vertices, and then
aggregates the PageRanks received by neighbors along incoming
edges to compute its new PageRank. PageRank is essentially a scat-
ter of vertex values performed by joining vertex identifiers with
outgoing edge source vertex identifiers, followed by a groupby ag-
gregation on vertex identifiers. Because this is an iterative algorithm
with changing input data, it is representative of long multi-phase
application graphs. We use GraphX’s example PageRank implemen-
tation for comparison, ensure the input is read locally, and check
that no crashes occur during execution.

As we can see, Hurricane performs much better than GraphX on
all input sizes. We observe significant task cloning in Hurricane
throughout the execution, particularly for partitions with high-degree
vertices, which allows each stage of the computation to finish in

System RMAT-24 RMAT-27 RMAT-30

Hurricane 38s 225s 688s
GraphX (Spark) 189s 3007s > 12h

Table 4: Comparison of Hurricane and GraphX on 5 iterations of
Pagerank over an RMAT-27, RMAT-30, and RMAT-32 graph.

a timely fashion. GraphX struggles to finish executing on larger
input sizes due to spilling and shuffling overhead. These results
demonstrate that Hurricane handles skew effectively in multi-stage
applications.

6 RELATED WORK

Adaptive Partitioning of Work. As far as we can tell, Hurricane is the
first cluster computing framework to adaptively partition work based
on load observed by workers during task execution. This design is
made possible through fine-grained data sharing among multiple
workers executing the same task and programmer-defined merge
procedures.

Several techniques have been proposed to split analytics jobs into
smaller tasks in order to mitigate skew and improve load balance.
These techniques require manual intervention from the program-
mer and are application- and input-specific. For instance, they re-
quire fine-tuning the programmer-defined split function [35], exploit-
ing commutativity and associativity to combine identical keys[46],
and/or splitting records for the same key across multiple partitions[8].
Hurricane mitigates skew in an application-independent manner by
dynamically splitting partitions when a task is cloned. We have
shown that our approach mitigates skew effectively, without requir-
ing tuning of the application for specific data sets, and that it is
applicable to arbitrary operations, such as finding unique values.

Traditional cluster computing frameworks split data into partitions
and use shuffling and sorting to merge them back in an application-
independent way [25, 32, 47]. This often times comes at the cost of
sorting intermediate outputs, and prevents records with the same key
being sent to multiple reducers, which can cause load imbalance in
the presence of skew. More importantly, this approach places con-
straints on the shape of partitions, making it harder to redistribute
a partition in a balanced way. Hurricane takes a different approach
by empowering application developers to provide a custom merge
method, when applicable. This merge subsumes the traditional shuf-
fling and sorting paradigm, while being more flexible, because it
allows the outputs of clones that have been created at any point
during execution to be merged in an application-specific manner.

Although adding a merge procedure to existing frameworks is rela-
tively simple, taking full advantage of it would require significant
re-engineering and changes to the execution model to allow for tasks
to be repartitioned on-the-fly. Fault tolerance mechanisms would
also need to be adapted to account for the possible presence of mul-
tiple partial outputs. Finally, frameworks which rely on key sorting
to send records to the appropriate reduce may also end up losing the
ability to combine records by key as a result of such changes.

EuroSys ’18, April 23–26, 2018, Porto, Portugal L. Bindschaedler et al.

Skew Mitigation. SkewTune [28] mitigates skew in MapReduce
programs by identifying slow tasks and repartitioning them to run on
idle nodes. Since the system is intended to be a drop-in replacement
for MapReduce, it suffers similar limitations, namely that the output
order must be preserved and the data placed locally on the original
worker. While this approach can help with skew, it also causes
significant data movement, which can overwhelm already overloaded
workers. SkewTune can also worsen performance inadvertently by
repartitioning tasks that are close to completion.

Camdoop [17] performs in-network data aggregation during the
shuffle phase of MapReduce applications, which can help mitigate
data skew by decreasing the amount of data moved and the overall
load on the network. Unfortunately, this solution requires special
hardware that is not currently available. We believe such hardware
would also benefit Hurricane deployments.

Straggler tasks are a challenge for analytics workloads [12]. A com-
monly used method for handling stragglers is speculative execution,
which involves detecting a straggler as soon as possible and restart-
ing a copy of the task on another machine [11]. While this approach
helps with machine skew, it does not address data or compute skew.
Hurricane allows slower workers to split their task via cloning, avoid-
ing the need to restart the task from scratch.

Garbage collection (GC) can be a major cause of skew for applica-
tions written in garbage-collected languages such as Java, Scala,
or Python. GC induces uncoordinated pauses across JVM [37],
thereby reducing overall throughput and increasing tail-latency. Re-
cent research attempts to mitigate this problem by synchronizing (or
desynchronizing) garbage collection across all workers running the
same application to minimize unpredictability [30]. Hurricane is also
prone to GC pauses, but its decentralized design and finer-grained
partitioning help reduce its impact.

When analytics applications suffer from skew in their input or inter-
mediate data, they may be forced to spill data to disk because it does
not fit in memory, leading to serious performance issues. Sponge-
files [20] allows machines with large datasets to use the memory
of remote machines as a backing store, thereby avoiding spilling.
Hurricane spreads data by default across all machines through the
bag abstraction. Since bags are backed by files, the spreading of data
helps even when the dataset size does not fit in the main memory of
the entire cluster, because it allows spreading the disk I/O.

Joins. Load balancing for parallel joins has been extensively stud-
ied in parallel parallel databases. Earlier work [21, 34] focused on
careful partitioning based on input sampling to achieve load balance,
while more recent approaches [42] use late binding to gain flexibility
and reassign partitions to other workers. Hurricane requires less
focus on partitioning, relying instead on cloning and merging for
handling skew.

Distributed Scheduling. Support for scheduling tiny tasks has led to
the design of distributed or hybrid schedulers such as Sparrow [38]
or Hawk [19]. Sparrow uses a batch sampling algorithm to schedule
tasks, whereas Hawk partitions the cluster for large and small jobs,
and uses a randomized work stealing algorithm to place short jobs.

Hurricane also recognizes the need for efficient scheduling, in partic-
ular for clones, and schedules tasks in a distributed and decentralized
way through work bags.

Storage Disaggregation. Hurricane draws inspiration from recent
research in storage disaggregation [14, 27, 33]. Decoupling storage
and computation makes it possible to achieve better utilization and
balance across workloads, the cost being remote storage access.
This cost is minimal for small-to-medium clusters with sufficient
bisection bandwidth. Hurricane takes these ideas a step further by
always spreading data across machines in the cluster, even when the
data fits in main memory.

7 CONCLUSIONS

This paper makes the case for Hurricane, a system for high-through-
put analytics designed from the ground up for handling skewed work-
loads. Hurricane works well because it is designed to dynamically
partition work based on load imbalance. It allows programmers to
seamlessly write applications whose performance does not degrade
significantly in the presence of skew. Applications using Hurricane
benefit from high capacity and scalability, as well as inherent load
balance and high parallelism.

We anticipate that with the coming data deluge there will be a need
for analytics over large volumes of data with a non trivial amount
of skew, for example to test hypotheses and discover patterns. In
this context, we believe it is critical for application developers to
have tools that enable them to focus on writing high-value business
application code rather than spending time fine-tuning partitioning
and system parameters to obtain good performance.

Acknowledgments: We would like to thank our anonymous review-
ers, shepherd Dushyanth Narayanan, Calin Iorgulescu, Amitabha
Roy, and Christoph Koch for their feedback that improved this work.
We would also like to thank Florin Dinu for his invaluable feedback,
his last minute printer debugging skills, and for motivating us to
keep improving our implementation. This work was supported in
part by the Swiss National Science Foundation NRP 75 Grant No.
167157.

REFERENCES
[1] 2011. http://www.dbms2.com/2011/07/06/petabyte-hadoop-clusters/. (2011).
[2] 2018. https://wiki.apache.org/hadoop/PoweredBy. (2018).
[3] 2018. http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.

html. (2018).
[4] 2018. http://akka.io/. (2018).
[5] 2018. https://netty.io/. (2018).
[6] 2018. https://github.com/real-logic/Aeron. (2018).
[7] 2018. http://freecode.com/projects/fio. (2018).
[8] 2018. http://cgnal.com/blog/using-spark-with-hbase-and-salted-row-keys/.

(2018).
[9] 2018. Stack overflow. (2018).

[10] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN Vijayku-
mar. 2012. Tarazu: optimizing mapreduce on heterogeneous clusters. In ACM
SIGARCH Computer Architecture News, Vol. 40. ACM, 61–74.

[11] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013.
Effective Straggler Mitigation: Attack of the Clones.. In NSDI, Vol. 13. 185–198.

[12] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G Greenberg, Ion Stoica, Yi
Lu, Bikas Saha, and Edward Harris. 2010. Reining in the Outliers in Map-Reduce
Clusters using Mantri.. In OSDI, Vol. 10. 24.

http://www.dbms2.com/2011/07/06/petabyte-hadoop-clusters/
https://wiki.apache.org/hadoop/PoweredBy
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
http://akka.io/
https://netty.io/
https://github.com/real-logic/Aeron
http://freecode.com/projects/fio
http://cgnal.com/blog/using-spark-with-hbase-and-salted-row-keys/

Rock You like a Hurricane: Taming Skew in Large Scale Analytics EuroSys ’18, April 23–26, 2018, Porto, Portugal

[13] Alexey Andreyev. 2014. Introducing data center fabric, the next-generation
Facebook data center network. 74145943/introducing-data-center-fabric-the-
next-generation-facebook-data-center-network (2014).

[14] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The end of slow networks: It’s time for a redesign. Proceedings of the
VLDB Endowment 9, 7 (2016), 528–539.

[15] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT:
A recursive model for graph mining. In Proceedings of the SIAM International
Conference on Data Mining. SIAM.

[16] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream Sum-
mary: The Count-min Sketch and Its Applications. J. Algorithms 55, 1 (2005),
58–75.

[17] Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O’Shea. 2012. Cam-
doop: Exploiting in-network aggregation for big data applications. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 3–3.

[18] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[19] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel.
2015. Hawk: Hybrid datacenter scheduling. In Proceedings of the 2015 USENIX
Annual Technical Conference. USENIX Association, 499–510.

[20] Khaled Elmeleegy, Christopher Olston, and Benjamin Reed. 2014. Spongefiles:
Mitigating data skew in mapreduce using distributed memory. In Proceedings of
the 2014 ACM SIGMOD international conference on Management of data. ACM,
551–562.

[21] Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, and Christoph
Koch. 2014. Scalable and adaptive online joins. Proceedings of the VLDB
Endowment 7, 6 (2014), 441–452.

[22] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-
loglog: the analysis of a near-optimal cardinality estimation algorithm. In Analysis
of Algorithms 2007 (AofA07). 127–146.

[23] Christos Gkantsidis, Dimitrios Vytiniotis, Orion Hodson, Dushyanth Narayanan,
Florin Dinu, and Antony IT Rowstron. 2013. Rhea: Automatic Filtering for
Unstructured Cloud Storage.. In NSDI, Vol. 13. 2–5.

[24] Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, and Alfons Kemper. 2012.
Load balancing in mapreduce based on scalable cardinality estimates. In Data
Engineering (ICDE), 2012 IEEE 28th International Conference on. IEEE, 522–
533.

[25] Apache Hadoop. 2009. Hadoop. (2009).
[26] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010.

ZooKeeper: Wait-free Coordination for Internet-scale Systems.. In USENIX annual
technical conference, Vol. 8. 9.

[27] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar.
2016. Flash storage disaggregation. In Proceedings of the Eleventh European
Conference on Computer Systems. ACM, 29.

[28] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2012.
Skewtune: mitigating skew in mapreduce applications. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. ACM, 25–36.

[29] Jimmy Lin and others. 2009. The curse of zipf and limits to parallelization: A
look at the stragglers problem in mapreduce. In 7th Workshop on Large-Scale
Distributed Systems for Information Retrieval, Vol. 1.

[30] Martin Maas, Tim Harris, Krste Asanovic, and John Kubiatowicz. 2015. Trash
Day: Coordinating Garbage Collection in Distributed Systems.. In HotOS.

[31] Michael Mitzenmacher. 2001. The Power of Two Choices in Randomized Load
Balancing. Trans. Parallel Distrib. Syst. 12, 10 (2001).

[32] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
439–455.

[33] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann, Jon Howell,
and Yutaka Suzue. 2012. Flat Datacenter Storage. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation. USENIX
Association, 1–15.

[34] Alper Okcan and Mirek Riedewald. 2011. Processing theta-joins using MapRe-
duce. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. ACM, 949–960.

[35] Kay Ousterhout, Aurojit Panda, Josh Rosen, Shivaram Venkataraman, Reynold
Xin, Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. 2013. The Case for Tiny
Tasks in Compute Clusters.. In HotOS, Vol. 13. 14–14.

[36] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-Gon Chun,
and V ICSI. 2015. Making Sense of Performance in Data Analytics Frameworks..
In NSDI, Vol. 15. 293–307.

[37] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-Gon Chun,
and V ICSI. 2015. Making Sense of Performance in Data Analytics Frameworks..
In NSDI, Vol. 15. 293–307.

[38] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:
Distributed, Low Latency Scheduling. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles. ACM, 69–84.
[39] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[40] Smriti R Ramakrishnan, Garret Swart, and Aleksey Urmanov. 2012. Balancing re-
ducer skew in MapReduce workloads using progressive sampling. In Proceedings
of the Third ACM Symposium on Cloud Computing. ACM, 16.

[41] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
2015. Chaos: Scale-out graph processing from secondary storage. In Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 410–424.

[42] Lukas Rupprecht, William Culhane, and Peter Pietzuch. 2017. SquirrelJoin:
network-aware distributed join processing with lazy partitioning. Proceedings of
the VLDB Endowment 10, 11 (2017), 1250–1261.

[43] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). IEEE, 1–10.

[44] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, and others. 2013. Apache hadoop yarn: Yet another resource negotiator. In
Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 5.

[45] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems. ACM, 2.

[46] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level Language.

[47] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. HotCloud 10, 10-10
(2010), 95.

[48] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica.
2008. Improving MapReduce performance in heterogeneous environments.. In
Osdi, Vol. 8. 7.

	Abstract
	1 Introduction
	2 Programming Model
	2.1 Application Model
	2.2 Dynamic Fine-grained Data Sharing
	2.3 Dynamic Merge-based Task Sharing

	3 Design
	3.1 Execution Model
	3.2 Task Cloning
	3.3 Storage Architecture
	3.4 Adding and Removing Nodes
	3.5 Assumptions and Limitations

	4 Implementation
	4.1 Task Scheduling
	4.2 Task Cloning
	4.3 Storage Nodes
	4.4 Fault Tolerance
	4.5 Software and Configuration

	5 Evaluation
	5.1 Taming Skew
	5.2 Design Evaluation
	5.3 Applications and Comparisons

	6 Related Work
	7 Conclusions
	References

