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Abstract—This paper focuses on extracting vehicle trajectory 

from low-quality, uncalibrated traffic cameras via fully automatic 

camera calibration and homography transformations. We analyze 

video streams from 511 traffic surveillance cameras in varying 

areas and arbitrary relative locations and orientations to roads. 

We propose a novel automatic calibration methodology that is 

used to transform the video streams to a top-down perspective 

from a minute of the video stream. Using this perspective, we can 

extract both lane changes and vehicle speed. Our automatic 

camera calibration algorithm is inspired by two vanishing point 

based automatic camera calibration methods. We implement more 

accurate and robust methods for the detection of both vanishing 

points. We show that YOLOv4 combined with DeepSORT is 12.5 

times faster than the leading vehicle detection model and achieves 

a 7.81% higher average precision and 6.04% higher mean average 

precision in low quality traffic surveillance cameras. We use this 

model for a more robust estimation of the first vanishing point and 

more robust object tracking. Furthermore, we propose a fast, 

novel “guess and check” algorithm for the detection of the second 

vanishing point to ensure accurate second vanishing point 

detection. We show that our camera calibration algorithm 

produces fewer inaccuracies than the state-of-the-art automatic 

camera calibration methodology in [1] through qualitative results. 

Keywords—camera calibration, traffic surveillance, computer 

vision, vanishing point detection 

I. INTRODUCTION 

Live traffic surveillance cameras are becoming increasingly 
more abundant [2]. This presents large opportunities for traffic-
based computational applications through constant surveillance 
of such cameras. These applications include:  

• Speed Limit: Estimation of vehicle speed from traffic 
video can be used by law enforcement for increased 
traffic safety [3].  

• Accident Detection: The detection of traffic anomalies 
and collisions in traffic cameras can alert law 
enforcement when accidents occur [4], [5].  

• Multi-Camera Fusion: Traffic Cameras that overlook 
different scenes in close areas can be fused together. 
Additionally, the same car can be tracked through 
multiple cameras [6].  

Computationally analyzing these cameras presents its own 
set of challenges. Traffic cameras are mounted at arbitrary 

orientations and locations and possess parameters that are 
specific to each camera. These parameters are necessary in 
extracting useful vehicle measurements in video, such as speed, 
acceleration, and real-world position. Camera calibration is the 
process of extracting such parameters of a camera from its video 
and/or images. In this work, we focus on using camera 
calibration to extract both speed and vehicle trajectory from the 
video streams without manual input.  

[7] is a review of the current camera calibration methods. It 
shows that many camera calibration methodologies require 
manual interference in the form of physical landmarks or 
measurements, such as annotated lane markings [8] or camera 
position [9], to aid in the extraction of its parameters. However, 
many of these measurements are challenging to find, especially 
over a large number of cameras. Automatic camera calibration 
is camera calibration with no manual involvement. However, 
most traffic cameras have a low resolution and frame rate. Even 
so, many current camera calibration algorithms rely on 
unrealistically high-quality traffic cameras [7].  

In this paper, we focus on a fully automatic camera 
calibration methodology, which needs no user input or scene 
measurements, for vehicle speed and trajectory extraction in 
low-quality traffic video. This algorithm allows for various 
camera resolutions, frame rates, and positions (orientation and 
location) and calibrates in about a minute of video stream. The 
only assumption we make is that the roads do not contain any 
sharp turns, which is rare for highway roads.  

Our methodology improves upon fully automatic traffic 
camera calibration algorithms that utilize the detection of two 
vanishing points, originally proposed in [10]. Since low-quality 
traffic camera data with camera calibration annotations are not 
currently available, we produce qualitative results of our camera 
calibration algorithm in comparison to a state-of-the-art 
algorithm on the same data. Our algorithm makes the following 
contributions: 

• We show that a YOLOv4 model [11] combined with 
DeepSORT [12] performs better than the leading 
traffic surveillance detection model on realistic, low- 
quality video streams 

• We improve on the detection of the first vanishing 
point (VP1) by proposing a more accurate and faster 
vehicle detection algorithm. We add vehicle tracking to 
extract the vehicle trajectory of each vehicle. 



• We propose a guess and check second vanishing point 
(VP2) detection algorithm to prevent incorrect 
estimations and inaccuracies. 

II. RELATED WORKS 

A. Camera Calibration 

An integral aspect of camera calibration is the detection of 
vanishing points. [14]-[20] rely on manual measurements on the 
road plane in some form to extract these vanishing points. 
However, algorithms to detect vanishing points without manual 
measurements also exist. One methodology for finding the 
vanishing points is by estimating the intersection of lane 
markings [21]-[23]. Another common methodology utilizes 
vehicle motion. [24] uses an activity map of the moving vehicles 
to detect the lane boundaries and finds the first vanishing point 
using the intersection of the lane boundaries. The second 
vanishing point is found by finding the intersection between 
lines in the direction of the bottom edge of each of the vehicles. 
However, they rely on manual measurements to determine the 
scene scale. 

[1], [10] begin with the detection of two vanishing points, 
and unlike [24], is fully automatic. Vehicles are tracked and the 
motion of the vehicles is passed into a Diamond Space [25]. The 
Diamond Space transforms the motion of the vehicles into a 
Hough Space and takes the global maximum as the first 
vanishing point. The second vanishing point is detected using 
the Diamond Space as well. However, instead of using the 
motion of the vehicles, strong edges that are not in the direction 
of the first vanishing point are passed into the Diamond Space 
and the maximum is taken as the second vanishing point. Using 
these two values, the focal point and the third vanishing point 
are both calculated. 3D bounding boxes are created using the 
three vanishing points and the mean dimensions of the vehicles 
in the video streams are compared to statistical data of mean 
vehicle dimensions in the country to determine the scene scale. 
Though this calibration algorithm works on some video streams, 
it often results in incorrect vanishing point estimations that lead 
to distorted birds-eye view transformations.  

[13] uses vanishing points to obtain a birds-eye view of the 
road plane. They detect vanishing points in the same manner as 
[1]. As shown in Figure 1, they use ground truth masks of the 
road and generate 4 lines, each starting at either the VP1 (dotted 
red) or VP2 (solid blue) and tangent to the road mask. The 
intersection points of these lines are used to find a perspective 
transformation matrix and transform the road to a top down view. 
We adopt this methodology and improve upon it by creating a 
more robust automatic camera calibration algorithm. 

B. Vehicle Detection and Tracking 

For the camera calibration algorithms that utilize the 
detection of vehicles for vanishing point estimation, their 
accuracy is highly dependent on the accuracy of their vehicle 
detection algorithms. Many of these algorithms opt for simple 
tracking algorithms: [10] utilizes a Kanade–Lucas–Tomasi 
feature tracker [26] and [13] relies on Kalman filters [27]. 
However, such simple tracking algorithms have shown to 
perform poorly in complex situations [28]. On the other hand, 
deep learning approaches have shown much more promise. 
Limited data exists on vehicle detection on traffic surveillance 

cameras. The most common dataset is the UA-DETRAC dataset 
(University at Albany DEtection and TRACking) [28], which 
provides over 10 hours of image sequences at 24 different 
locations with different camera angles, camera positions, and 
lighting conditions. [29] achieves the highest mean average 
precision (maP) score on the UADETRAC dataset. It utilizes a 
CenterNet architecture [30] to perform both vehicle detection 
and segmentation. However, it does not perform vehicle 
tracking, which is imperative for common computational traffic 
surveillance tasks, such as speed estimation and multicamera 
fusion. Although intersection over union (IOU) [31] based 
tracking algorithms can sometimes be used to circumvent this 
issue, they are ineffective on traffic surveillance videos with 
slow frame rates or frequent frame drops. 

 

Fig. 1. The process of the construction of the perspective transformation using 

the first and second vanishing points [13] 

III. METHODOLOGY 

A. Vehicle Detection 

Our vanishing point estimation algorithm relies on the 
detection of vehicles (see Section II-B and Section II-C). For the 
purpose of this study, we decide to focus on the UA-DETRAC 
dataset [28]. However the UA-DETRAC dataset is recorded at 
25 frames per seconds (fps), with the JPEG image resolution of 

. . 



960 × 540 pixels [28]. Such quality is unrealistic for the majority 
of traffic cameras, such as the 511 cameras used for this study 
[32], which are recorded at 15 frames per second with a 
resolution of 320 x 240 pixels [33] and include frequent frame 
drops. Thus, we lower the resolution, lower the frame rate, and 
incorporate frame drops in the UA-DETRAC dataset for our 
evaluation of the models. This provides a more realistic 
evaluation for how the model will perform on traffic 
surveillance cameras.  

We choose to use a YOLOv4 [11] model with DeepSORT 
[12] to perform both vehicle detection and tracking. The object 
detection output from YOLOv4 is passed into the DeepSORT 
algorithm, which uses both Kalman filters and a re-identification 
model to assign IDs to each vehicle. Table I shows the 
evaluation of this model and the state-of-the-art SpotNet [29] 
model on our modified UA-DETRAC dataset. 

TABLE I. COMPARISION OF OUR YOLOV4-DEEPSORT AND SPOTNET [29] 

ON OUR MODIFIED UA-DETRAC DATASET WITH AVERAGE PRECISION (AP), 
MEAN AVERAGE PRECISION (MAP), AND FRAMES PER SECOND 

Model 
AP maP FPS 

SpotNet [29]  
70.23%  50.34% 2 FPS 

YOLOv4- DeepSORT 78.04% 56.38% 25 FPS 

B. First Vanishing Point 

We adopt the VP1 detection proposed by [10] and improve 
it by implementing our more accurate YOLOv4-DeepSORT 
vehicle tracking algorithm. We track cars using YOLOv4-
DeepSORT and fit a line to the path of each distinct vehicle. As 
shown in Figure 2, the VP1 (filled blue circle) corresponds to 
the estimation of the intersection of all the vehicle paths. To 
estimate the intersection of the vehicle paths, we use the 
RANSAC [34] model proposed by [35] as it is robust against 
outlier paths, such as lane changes or video processing issues, 
that are not in the direction of the true VP1. The blue lines 
represent the vehicle paths extended to the VP1 while the red 
lines represent the detected vehicle paths. 

 
Fig. 2. RANSAC algorithm used on vehicle paths to estimation VP1. VP1 

represented with the intersection of blue lines 

C. Second Vanishing Point 

[10] shows that the VP2 is in the direction of many of the 
strong edges on the vehicles. Thus, we implement a probabilistic 
Hough line algorithm [36] on vehicles detected from our 
YOLOv4-DeepSORT model to find such edges, shown in 
Figure 3. Then, we pass these edges into a Diamond Space [25] 
that transforms all the detected edges on the road plane into a 
finite Hough space. [1], [10] take the global maximum in this 
space as the VP2. However, we find that, especially in low 
accuracy images, both the edge detection implemented by [1], 
[10] and the probabilistic Hough line are often too inaccurate to 
simply take the global maximum in the Diamond Space as the 
VP2. 

 

Fig. 3. Examples of edges from probabilistic Hough line algorithm on detected 

vehicles 

 

Fig. 4. Diamond space accumulator for VP2 estimation. Red crosses represent 

VP2 guesses in the diamond space 

We propose a guess and check methodology for VP2 
estimation. Since the VP1 estimation is very accurate, we hold 
that as constant. During the VP1 estimation, we also generate a 
mask of the road using the detected 2D vehicle bounding boxes. 
We then use the probabilistic Hough lines to pass in the vehicle 
edges into the Diamond Space, weighted by the strength of the 
edges. We find local maximums in the Diamond Space and use 
these as VP2 guesses; an example of the VP2 guesses in the 
Diamond Space is shown in Figure 4. 



For each VP2 guess, we use the road mask and VP1 to 
generate a top down view of the road plane using the process 
summarized in Figure 1. A birds-eye view transformed video 
stream using the true VP2 will show the vehicles and lane lines 
in parallel and vertical, as they are in the real world scene, 
because the birds eye view transformation effectively transforms 
the (u, v) image pixel positions to 2D (x, y) real world 
coordinates. However, many of the VP2 guesses are incorrect 
and will produce distorted images after the birds-eye view 
transformation (example in Figure 5). Thus, for each perspective 
transformation, we find the standard deviation of the slopes of 
the fitted lines for the motion of each vehicle. We choose the 
VP2 guess that generates the smallest standard deviation to be 
the most accurate VP2. An example of a final, correct birds-eye 
view transformation using the VP2 estimation with our 
algorithm is shown in Figure 6, where the cars move in parallel. 

 

Fig. 5. Example of VP2 guess that produces an incorrect perspective 

transformation 

 

Fig. 6. Final perspective transformation with the chosen, correct VP2 estimation. 

D. Traffic Information Extraction 

After obtaining the final VP1 and VP2 estimation values, we 
compute the final birds-eye view transformation. We compare 
the average speed of the vehicles in the calibrated video stream 

to the average speed of vehicles on the road that the camera 
overlooks to obtain the scene scale. 

IV. RESULTS 

There are limited camera calibration datasets on low quality 
traffic surveillance streams. Thus, we show the effectiveness of 
our automatic camera calibration algorithm by comparing it with 
the state-of-the-art algorithm presented in [1]. We take the 
detected vanishing points of each algorithm on the same video 
stream and compare the resulting birds-eye view images after 
applying the algorithm shown in Figure 1. As stated previously, 
accurate vanishing point detection should result in a birds eye 
view transformation with vehicles that are moving in parallel 
and parallel lane lines. Furthermore, lane widths should be 
constant as they are in the real world. We evaluate the algorithms 
on three low-quality, live traffic video streams from the Virginia 
Department of Transportation Database [32] and two high-
quality traffic video streams from the original UA-DETRAC 
dataset.  

Cameras a, b, and e are on standard 511 traffic surveillance 
streams [32] and cameras c and d are high quality streams from 
the UA-DETRAC dataset. We evaluate the camera calibration 
algorithms by comparing the transformed images to real world 
coordinates. As stated previously, this means that lanes lines and 
vehicles motion should be parallel as they are on the road plane. 
Our automatic camera calibration methodology is able to 
correctly estimate vanishing points in all five video streams, 
since all of the transformed images in the middle column have 
parallel lane lines and vehicle motion. On the other hand, the 
automatic camera calibration algorithm in [1] does not work on 
the lower quality 511 streams. We observe that the lane lines in 
the rightmost column of rows a, b, and e converge to a singular 
point, which is not how they are in the real world, showing that 
the camera calibration was ineffective. In contrast, both our 
calibration algorithm and the calibration algorithm in [1] 
perform well on the high quality UA-DETRAC stream, shown 
in row c and d. We conclude that our automatic camera 
calibration algorithm is more accurate and more robust to lower 
quality video streams than the state-of-the-art automatic camera 
calibration algorithm in [1], which is only accurate on high-
quality streams, while our algorithm is effective on any quality 
of traffic video stream. 

Our camera calibration output on row b shows that, while 
our algorithm does extract a correct birds-eye view perspective 
(with parallel lane lines), the transformed image does not cover 
the whole road. The limitation results from the mask generation 
as the vehicles that are far away from the camera go undetected. 
A road mask generation algorithm that does not require 
detection of vehicles would be more effective in this situation. 

V. CONCLUSIONS 

This paper presented a novel automatic camera calibration 
algorithm that increases the accuracy of the first and second 
vanishing point estimation in low quality traffic surveillance 
cameras. We implemented a YOLOv4 model combined with a 
DeepSORT model and show that it has a 7.81% higher average 
precision and 6.04% higher mean average precision than the 
leading vehicle detection model, SpotNet [29], on low-quality 
traffic surveillance video. We used this model to improve upon 



the motion-based VP1 estimation introduced in [10] and also 
performed robust vehicle tracking using the DeepSORT re-
identification model. We also introduced a novel ”guess and 
check” VP2 estimation algorithm that evaluated each VP2 guess 
and chooses the best estimate as the final VP2. We showed that 

our automatic camera calibration algorithm is more robust to 
low-quality video streams and produces significantly less 
inaccuracies than the state-of-the-art camera calibration 
algorithm in [1] through qualitative results on a variety of roads. 

 

Fig. 7. Automatic camera calibration run on traffic surveillance video streams, varying in features. The left column is the original camera perspective. The middle 

column contains the results of our automatic camera calibration algorithm. The rightmost column has the results of the camera calibration algorithm in [1]. 
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