
Unshackling Database Benchmarking from
Synthetic Workloads

Parimarjan Negi∗1, Laurent Bindschaedler∗1, Mohammad Alizadeh1, Tim Kraska1,
Jyoti Leeka2, Anja Gruenheid2, Matteo Interlandi2

1MIT, 2Microsoft
pnegi@mit.edu, bindscha@mit.edu, alizadeh@csail.mit.edu, kraska@mit.edu

{first-name}.{last-name}@microsoft.com

Abstract—Introducing new (learned) features into a DBMS
requires considerable experimentation and benchmarking to
avoid regressions in production (customer) workloads. Using
standard benchmarks such as TPC-H and TCH-DS is common
practice, but, unfortunately, these do not represent the complexity
of real production workloads. To solve this problem, in this demo,
we propose a technique that generates a synthetic dataset from
query logs and metadata—without touching the original data.
The keystone of our approach is to map the data generation as
a SAT problem where constraints, such as runtime cardinalities,
are extracted from query logs and metadata. We show that our
approach can generate representative benchmarks mirroring the
performance of the original data without trading off privacy. The
demo will guide the attendees through the various steps involved
in the data generation and testing process.

Index Terms—synthetic data generation, benchmarking, SAT.

I. INTRODUCTION

Large-scale analytics engines, such as Spark, SCOPE,
Synapse, BigQuery, Redshift, and Snowflake, have become a
core dependency for modern data-driven enterprises to derive
business insights. At Microsoft, for example, the SCOPE big
data analytics query engine in Cosmos is deployed over hun-
dreds of thousands of machines, every day executing hundreds
of thousands of jobs. These jobs are written by thousands of
developers, process several exabytes of data, occupy millions
of containers, and consume several petabytes of I/O [1].

Implementing new DBMS features, such as changes to
storage layout [2], [3], addition of new rules to the query
optimizer [4], or learned systems [5], [6], requires significant
benchmarking to avoid performance regressions that can im-
pact thousands of users. The current approach to benchmarking
relies on synthetic workloads, such as TPC-H [7] or TPC-
DS [8]. However, these benchmarks do not cover the vast
diversity of real-world production workloads [9]. Real-world
workloads often differ in many dimensions, such as the types
of operators, the complexity of filters, or query templates.
Fig. 1 illustrates these differences by comparing the selectivity
of continuous filters (e.g., range predicates on a column) vs
discrete filters (such as equality predicates) on several known
DBMS benchmarks such TPC-H [7], TPC-DS [8], Cardinality

∗ Equal Contribution.

Fig. 1: Fraction of continuous operators in queries vs average
selectivity. Each point represents a collection of inputs in
Cosmos (gray), or a standard DBMS workload (colored).

Estimation Benchmark (CEB) [10], and Join Order Bench-
mark [11], along with real-world workloads from a SCOPE
cluster. The wide diversity of real-world workloads suggests
that evaluating new features only on synthetic benchmarks
may overfit the few covered cases. In turn, this approach could
indicate good performance on paper, but suffer considerable
performance regression when deployed in production.

DBMS workloads can be split into three main components:
the data, the queries, and metadata (e.g., cardinalities gener-
ated by executing the queries on the data, or the schema infor-
mation of the database). Among the three components, data
is the most challenging to acquire for benchmarking purposes
since it is generally not feasible to access real-world customer
data due legal or privacy concerns. Conversely, accessing
anonymized query logs and metadata is more straightforward:
in fact, several cloud systems already store this information
for offline historical and post-mortem analysis [1].

This demo presents a first step towards automati-
cally synthesizing databases from workload logs containing
anonymized queries and metadata information such as runtime
cardinalities and schema information. The resulting data can
then be used along with the queries as a synthetic bench-

Query Size
SELECT * FROM title WHERE
title.title = 'Iron Man 2' 200

SELECT * FROM title WHERE
title.title IN ('Inception',
'Dunkirk', 'Tenet',)

5000

.....

Anonymous Query Size
SELECT * FROM A WHERE
A.a1 = 'X1' 200

SELECT * FROM A WHERE
A.a1 IN ('X10', 'X34',
'X400'...)

5000

.....

DB (private)

DB (generated)

SAT Program

SUM (A.a1 = 'X1') = 200

SUM (A.a1 = 'X10 OR A.a1 = 'X34' OR A.a1 = 'X400') = 5000

...

≈Metadata

1 2

1 4

3

5
6

7

8 9

Fig. 2: Overview of our approach.

mark mirroring the characteristics of the original workload.
Other approaches have been proposed to solve a similar
problem [12], [13]. However, these approaches: (1) use a
distribution-based approach which breaks when the distribu-
tion from query logs does not match the one in the data,
or (2) require accessing the original data (e.g., SAM [12]
learns the correlation across tables by executing an outer join).
The keystone of our approach is to look both at queries and
metadata information, and consider them as constraints. We
then map the data generation to a SAT problem and use off-
the-shelf constraint solvers [14] to generate a possible solution.
To the best of our knowledge, our approach is the first to show
that mapping the data generation to a SAT problem allows
generating datasets with similar latency as the real database
on the given queries. In the demo, we will guide the audience
through our approach using two open-source databases.

In the rest of this paper, we show the different steps required
to generate new synthetic benchmarks: (1) parsing the input
query logs and metadata into an intermediate representation
(IR); (2) generating a SAT program from the IR; (3) solving
and post-processing to create the synthetic database; finally,
(4) we compare the generated database on the input workloads
against the original one.

II. SYSTEM DESCRIPTION

Fig. 2 provides an overview of our synthetic benchmark
generation. We start with a customer workload containing a
private dataset (❶) and a set of queries (❷). The customers
submit the queries to a cloud data warehouse system such
as SCOPE. The output consists of the performance of these
queries (❸), and a set of anonymized queries (❹), with runtime
statistics (such as cardinalities of intermediate results) (❺).
Our system takes as input the anonymized queries, runtime
statistics, and schema metadata (❻), and maps them to a SAT
program (❼). The solution to the program is a synthetic dataset
(❽) that can subsequently be used to run the anonymized
queries. We define the pair of synthetically generated data and
the anonymized queries as a synthetic benchmark. We aim for

this synthetic benchmark to be representative of the original
workload, i.e., its execution performance (❾) is similar to the
original (❸). Next, we formally define the problem.

A. Problem Statement

At a high-level, our approach consists of translating the
filter predicates of SQL queries and the corresponding runtime
statistics into constraints, specifically a Boolean satisfiability
problem (SAT) that we then solve using an off-the-shelf solver.
The ultimate goal of this approach is to assign one value per
element in a series of matrices that represent the tables of the
original database. More formally, assuming that the database
consists of n tables, we define one representative matrix MT

per table T with each element MT i,j corresponding to a
variable whose domain ranges over all possible values of
column j in the original table and NULL. Since different
queries may cause the domains of the same variable to overlap,
we opt to represent each variable MT i,j as a series of Boolean
variables MT i,j,v for all possible v values in the domain. Only
one MT i,j,v can be true for all v, allowing us to easily
decode the corresponding value for MT i,j .

Each filter constraint limits the possible values of each
variable and any assignment to the variables that satisfies
all constraints is a solution to the problem. Given any valid
solution, we can reconstruct the data in the database such that
the SQL queries will lead to the same selectivity and execute
with a similar performance profile.

B. Pre-processing

Pre-processing involves several steps that collect neces-
sary data to build the appropriate models. Starting from an
anonymized query log, we derive the columns and filters along
with a series of column-based partitions. Fig. 3 illustrates
the different pre-processing steps and results. Note that the
original database is shown for illustrative purposes and is
not assumed to be accessible for pre-processing. We provide
scripts to extract information from query logs generated by
different DBMS (e.g., Postgres and SCOPE).
Derived columns. We identify all queried columns and their
types from the query log, thereby deriving a subset of the
original database schema.
Derived filters. We extract from the query logs the filter con-
ditions as well as the cardinalities from the runtime statistics.
Partitions. We partition the filters by their covered columns,
resulting in disjoint sets of queries and SAT problems.
Downsampling. Given a large table and related domains for its
variables, the SAT problem can easily reach millions to billions
of variables. The off-the-shelf solver we are using [14] works
reasonably well for SAT problems with at most 100 million
variables. Therefore, we achieve scalability by downsampling
each table to a lower number of rows, adjusting the selectivity
of each query in the process. We address lost filters whose se-
lectivity downsamples to zero during post-processing (§II-D),
by adding the corresponding values uniformly at random after
upsampling. As evaluated in Section III, we find that, in most

SELECT * FROM employee WHERE last_name = ‘Dupond’;

SELECT COUNT(id) FROM employee WHERE last_name IN
(‘Dubois’, ‘Dupond’) AND age < 50;

SELECT * FROM department;

SELECT name, COUNT(employee_id) FROM department,
employee WHERE employee.dept_id = department.id;

...

id first_name last_name age dept_id

1 Pierre Dupond 42 3

2 Jean Dubois 31 1

3 Alfonse Dupond 55 3

4 Albert Dupont 29 1

...

id name

1 accounting

2 IT

3 legal

...

employee

department

filter selectivity

last_name = ‘Dupond’ 427

last_name in (‘Dubois’, ‘Dupond’)
AND age < 50

201

card(department) 23

employee.dept_id = department.id 4,375,920

employee: {

id: integer

last_name: string

age: integer

dept_id: integer

}

department: {

id: integer

name: string

}

Partition #1 Partition #2

employee.last_name employee.dept_id

employee.age department.id

employee.id department.name

Query Log Original database

Derived columns Derived filters

Partitions

Fig. 3: An example of pre-processing.

cases, our approach does not significantly affect the results
due to the low performance impact of these filters.

C. SAT Programming

After pre-processing, we obtain the derived columns, fil-
ters, and corresponding partitions. We can then proceed with
modeling the problem as a SAT program. We illustrate the
modeling process in Fig. 4, for the example introduced above.

id last_name age

ln1 age1

ln2 age2

ln3 age3

ln4 age4

Partition #1

ConstraintsVariables

filter downsampled
selectivity

last_name = ‘Dupond’ 2

last_name in (‘Dubois’, ‘Dupond’)
AND age < 50

1

Domains

ln in (‘Dupond’, ‘Dubois’)

age in (50)

SAT Problem

Boolean variables:

lni,0, lni,1, lni,2 for i in [0, 4]

agei,0, agei,1 for i in [0, 4]

Where:

- lni,0 represents a value of NULL

- lni,1 represents a value of ‘Dupond’

- lni,2 represents a value of ‘Dubois’

- agei,0 represents a value of NULL

- agei,1 represents a value of 50

Constraints:

Only one true value per Boolean variable in a row

Σj(lni,j) = 1 for i in [0, 4]

Σj(agei,j) = 1 for i [0, 4]

First filter (last_name = ‘Dupond’)

Σj(lni,1) = 2 for i in [0, 4]

Second filter (last_name in (‘Dubois’, ‘Dupond’) AND age < 50)

tmpi = lni,1 * agei,1 + lni,2 * agei,1 for i in [0, 4]

Σ(tmpi) = 1 for i in [0, 4]

Fig. 4: Modeling the example of Fig. 3 as a SAT program.

We pick a downsampled cardinality for each table in the
partition and assign one variable per row and column. We
next select only those downsampled filters (constraints) for
the current partition, and collect the literals to compute the
domain of each column. Note that we assume that the domain
of a column is equal to the set of all queried values, i.e., a value
which is not queried is ignored and will not be represented in
the SAT program (or the final solution). This assumption is
reasonable for our goal of matching the performance of the
given set of queries only.

We encode the SAT program as follows. For each column
and for each row in each table, we assign a series of Boolean
variables corresponding to each value in the column’s domain
and the special Unspecified value. For example, in Fig. 4,
the last_name column has 3 possible values in its domain
(Unspecified, “Dupond”, and “Dubois”). For each row i,
we assign three Boolean variables (lni,0, lni,1 and lni,2,
corresponding respectively to Unspecified, “Dupond” and
“Dubois”. We add a constraint for each row requiring that
only one Boolean variable per column is set to 1 (true).

Having encoded all variables, we now process each filter
and add the corresponding constraints to the SAT program.
These constraints encode the selectivity of each query, forcing
any solution to the program to match the required selectivity.
In our example, the first filter (last_name = “Dupond”)
is encoded as a sum constraint, i.e., two rows in the table must
have lni,1 (corresponding to “Dupond”) set to true. Finally,
we encode the second filter (last_name in (“Dubois”,
“Dupond”) AND age < 50) using temporary variables to
correlate the values of the two columns spanned by the filter.
These temporary variables enforce that the variables satisfying
the filter in each column appear in the same row to ensure that
the selectivity of the filter is correct. Each temporary variable
simply requires that lni,1 (“Dupond”) and agei,1 (50) or lni,2

(“Dubois”) and agei,1 (50) appear twice in the table.
The resulting SAT program can be solved using an off-the-

shelf solver. Any solution to the program corresponds to an
assignment that satisfies all constraints.

D. Post-processing

Post-processing consists of multiple steps that reconstruct
a database from the solutions of each model. Here, we also
utilize the schema metadata to build the final tables.
Combining solutions. We combine the different solutions to
each model by creating the corresponding tables and placing
the values in each column accordingly. Since each solution is
assumed to be independent from others, this process simply
involves appending the values to the appropriate column.
Upsampling. The resulting database is representative of the
original database with the exception that its size is smaller
due to downsampling. Therefore, we upsample the database
by the same factor used for downsampling.
Filling in unspecified values. Recall, if the filter conditions
do not cover the full table, the reconstruction will be partially
unspecified. These unspecified rows are filled with:

1) Lost Filters: Due to downsampling, some filters with
very low cardinalities were lost. These are filled in
uniformly among the unspecified values in this step.

2) null values: The metadata information would give us
the fraction of the column with null values—a fraction
of the reconstructed column is filled in with null.

3) The remaining unspecified values are filled with random
values sampled from the domain of the column; here
we can use the statistics about column size to choose
appropriate length values. This is necessary to get

0.15 0.20 0.25 0.30 0.35
Generated Data

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Tr
ue

 D
at

a
Total Latency, True: 1129.98; Generated: 1116.99

(a) IMDb – Table: ‘name’.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Generated Data

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Tr
ue

 D
at

a

Total Latency, True: 3102.17; Generated: 2986.1

(b) IMDb – Table: ‘movie info’.

0.1 0.2 0.3 0.4 0.5 0.6
Generated Data

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 D
at

a

Total Latency, True: 1204.5; Generated: 1186.26

(c) Financial – Table: ‘transactions’.

Fig. 5: Latencies of queries on data generated by our approach vs. true data.

matching performance as the original database because
even though these values were not in the filters, they
influence the execution times of the filters.

Data Layout. To get the matching performance, we use the
original schema metadata to layout the data in the same format,
e.g., sorted on the same column, same indices.

III. EVALUATION

Databases and Query Workloads. We use two different real-
world databases to evaluate our system.

1) Internet Movie Database (IMDb). We use the Cardinality
Estimation Benchmark (CEB) [10] as the query work-
load, and extract equality and LIKE filters on the two
largest single tables (movie info, 36M rows), and (name,
4M rows). These include up to five columns, with filters
on up to two columns at a time.

2) Financial. This dataset is a publicly available database
of bank transactions [15]. We create an automated
workload of equality filters on five of the columns of
the largest table.

Evaluation Metric. Our goal is to generate synthetic databases
on which the given queries perform similarly. To evaluate this,
we execute the same queries on the original and synthetic data
and compare the execution latencies.
Results. Fig. 5 shows that executing workload queries on the
synthetic data generated using our approach closely matches
the latency on the ground truth data. Admittedly, the quality
of the data reconstruction is not perfect due to approximations
in our approach, such as downsampling (§ II-B). However,
we observe a strong correlation between the generated data
and the actual data on the query performance characteristics.
Moreover, the total runtime latency of the workload over the
generated dataset is within 2% of the original.

IV. DEMONSTRATION

This demonstration will guide the attendees through the
different steps composing our data generation workflow. To
interface with the system, we will provide a python notebook
containing code for the pre-processing, SAT programming,

and post-processing steps required to generate the data. The
attendees will run the notebooks, inspect the results, load the
data into an external database (Postgres) and run the queries
on the generated data. We will pre-load the system with IMDb
and Financial, and provide the query logs and runtime statistics
as described in the evaluation.

V. CONCLUSION

This demo showcases how to generate synthetic benchmarks
from production workloads without touching data. The pro-
posed approach relies on SAT solvers to create a database
following data constraints extracted from query predicates. We
will walk the attendees through the steps required to generate
the data during the demonstration. This work is the first step in
our vision of producing representative synthetic benchmarks
from production workloads.

REFERENCES

[1] C. Power and et al., “The cosmos big data platform at microsoft: Over a
decade of progress and a decade to look forward,” Proc. VLDB Endow.,
vol. 14, no. 12, pp. 3148–3161, 2021.

[2] M. Sivathanu and et al., “Instalytics: Cluster filesystem co-design for
big-data analytics,” ACM Trans. Storage, vol. 15, no. 4, 2020.

[3] S. Gakhar et al., “Pipemizer: an optimizer for analytics data pipelines,”
PVLDB, 2022.

[4] J. Leeka and K. Rajan, “Incorporating super-operators in big-data query
optimizers,” PVLDB, vol. 13, no. 3, 2019.

[5] W. Zhang and et al., “Deploying a steered query optimizer in production
at microsoft,” in SIGMOD ’22. ACM, 2022, pp. 2299–2311.

[6] A. Jindal and J. Leeka, “Query optimizer as a service: An idea whose
time has come!” SIGMOD Record, 2022.

[7] T. P. P. Council. (2018) Tpc benchmark h.
[8] ——. (2018) Tpc benchmark ds.
[9] L. Bindschaedler and et al., “Towards a benchmark for learned systems,”

in ICDE Workshop, 2021, pp. 127–133.
[10] P. Negi and et a., “Flow-loss: Learning cardinality estimates that matter,”

Proc. VLDB Endow., vol. 14, no. 11, pp. 2019–2032, 2021.
[11] V. Leis and et al., “How good are query optimizers, really?” Proc. VLDB

Endow., vol. 9, no. 3, pp. 204–215, 2015.
[12] J. Yang and et al, “Sam: Database generation from query workloads

with supervised autoregressive models,” in SIGMOD, 2022.
[13] A. Arasu, R. Kaushik, and J. Li, “Data generation using declarative

constraints,” in SIGMOD, 2011, p. 685–696.
[14] “CP Solver,” https://developers.google.com/optimization/cp/cp solver.
[15] J. Motl and O. Schulte, “The ctu prague relational learning repository,”

arXiv preprint arXiv:1511.03086, 2015.

