
May the Memory Be With You: Efficient and Infinitely
Updatable State for Large Language Models

Excel Chukwu
echukwu@mpi-sws.org

Max Planck Institute for Software Systems
Saarbrücken, Saarland, Germany

Laurent Bindschaedler
bindsch@mpi-sws.org

Max Planck Institute for Software Systems
Saarbrücken, Saarland, Germany

Abstract
Large language models (LLMs) excel at natural language
tasks but lack persistent state management for personal-
ized and adaptive interactions. We propose a framework
that endows these models with stateful capabilities by com-
bining retrieval-augmented generation (RAG) and low-rank
adaptation (LoRA). Our approach recasts the LLM as an ed-
itable component that retains hierarchical knowledge, anal-
ogous to deferred merge operations in log-structured merge
(LSM) trees. The system integrates short-term context with
long-term memory by storing accumulated context in a re-
trieval system while periodically training and combining
lightweight LoRA adapters. Preliminary evaluations demon-
strate improved state retention and query performance com-
pared to both standard LLMs and RAG-augmented models,
supporting our vision for scalable, stateful AI systems.

CCS Concepts
• Information systems→ Information retrieval;Dataman-
agement systems;Data structures; •Computingmethod-
ologies→ Natural language processing; Machine learn-
ing; Knowledge representation and reasoning; • Soft-
ware and its engineering → Software system structures.

Keywords
Large language models, stateful AI systems, low-rank adapta-
tion, retrieval-augmented generation, contextual knowledge
management, persistent state retention, hierarchical state
management, log-structured merge trees.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/10.1145/3721146.3721951

ACM Reference Format:
Excel Chukwu and Laurent Bindschaedler. 2025. May the Mem-
ory Be With You: Efficient and Infinitely Updatable State for Large
Language Models. In The 5th Workshop on Machine Learning and
Systems (EuroMLSys ’25), March 30–April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3721146.3721951

1 Introduction
Large language models (LLMs) are now deployed as the cen-
tral component in various applications, ranging from conver-
sational agents to complex decision support systems. These
models have demonstrated exceptional capabilities in natu-
ral language understanding and generation; however, they
inherently lack mechanisms for persistent state management.
In many applications, retaining user-specific context, histor-
ical task data, and evolving situational information is crucial
to enable personalized and adaptive interactions.
This paper addresses the core problem of effective reten-

tion, retrieval, and management of contextual knowledge
(state) in AI systems that rely on LLMs. Existing approaches
such as retrieval augmented generation (RAG) [8, 13], dif-
ferentiable memory [5, 21], and in-model knowledge edit-
ing [6, 16, 23] have been proposed to overcome the limita-
tions of statelessness, but they suffer from significant lim-
itations. RAG methods excel at storing extensive informa-
tion and retrieving it based on semantic similarity. However,
they often struggle to retrieve contextually nuanced details
when the query lacks strong semantic alignment with the
stored representations, and they are limited by the size of the
model’s contextual window. On the other hand, differentiable
memory architectures and knowledge editing techniques al-
low for direct updates to the model’s internal knowledge but
come with significant computational costs and scalability
limitations and are not well-suited for handling dynamic,
continuously evolving state information.

We present a novel hybrid framework that combines RAG
with low-rank adaptation (LoRA) techniques [4, 10] to over-
come the limitations of existing methods. The key intuition
behind our approach is to reconceptualize the LLM as a
stateful, editable component that retains knowledge in a
hierarchical manner. By storing the accumulated state in

https://orcid.org/0009-0006-5043-4247
https://orcid.org/0000-0003-0559-631X
https://doi.org/10.1145/3721146.3721951
https://doi.org/10.1145/3721146.3721951
https://doi.org/10.1145/3721146.3721951

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Chukwu, E and Bindschaedler, L

a retrieval system and periodically training corresponding
lightweight LoRA adapters, our method maintains an effi-
cient and continuously updated representation of the user
context that supports rapid and precise retrieval even as the
stored information grows, ensuring accurate and scalable
retrieval with low computational overhead.
Our framework decomposes persistent state into modu-

lar components that are managed by specialized adapters.
These adapters are designed to handle various aspects of the
state, such as user preferences, task histories, and domain-
specific instructions. A hierarchical management mechanism
governs the consolidation and merging of overlapping or out-
dated information, enabling dynamic loading and multi-level
state retrieval. This approach parallels the functioning of
LSM trees, wherein recent data is maintained in fast memory
and periodically merged into longer-term storage [14, 17].
Our preliminary experimental evaluation demonstrates

that the proposed framework significantly improves state
retention and query performance relative to traditional ap-
proaches. The initial prototype supports our vision by show-
casing improved efficiency in computational cost and re-
trieval accuracy. These early results provide evidence that
integrating RAG with LoRA adapters is a viable direction for
building stateful AI systems in dynamic scenarios.

In summary, this paper makes the following contributions:

• We present a novel framework that transforms state-
less LLMs into stateful systems by combining RAG and
LoRA adapters.

• We propose a hierarchical state management mecha-
nism that efficiently organizes and consolidates evolv-
ing contextual information, drawing analogies to LSM.

• We provide empirical evidence that our prototype im-
proves state retention, computational efficiency, and
response accuracy compared to traditional approaches.

In the remainder of this paper, we describe our system
design and implementation, present preliminary results that
support our vision, and discuss limitations and future work.

2 Background and Motivation
This section provides a brief overview of key concepts and
related work that motivate our design choices. We discuss
context retention in LLMs, retrieval-augmented generation
(RAG), low-rank adaptation (LoRA), and log-structuredmerge
(LSM) trees, and present the analogy of LLMs as lossy com-
pressed databases.

2.1 Long-Term Context in LLMs
Maintaining long-term context in large language models
is challenging due to fixed context window sizes. Standard
transformers can only handle a limited number of tokens

per query, which forces systems to either re-send the en-
tire conversation history or risk losing important context.
Approaches such as Transformer-XL introduce recurrence
mechanisms to capture longer-term dependencies [3]. Exter-
nal memory systems and summarization techniques are used
to compress prior interactions into manageable representa-
tions [2, 15]. Recent work explores memory compression
and k-nearest neighbor mechanisms to retain important to-
kens, mitigating context loss from window limitations [22].
However, these methods involve trade-offs in complexity
and accuracy, motivating our explicit state management.

2.2 Retrieval-Augmented Generation
RAG enhances LLMs by supplementing their parametric
knowledge with an external, non-parametric memory. In
RAG, relevant documents or facts are retrieved from a knowl-
edge base and conditioned on by the model during gener-
ation [8, 13]. This dual memory system improves factual
accuracy and allows for dynamic knowledge updates. Recent
work has extended the RAG paradigm by integrating struc-
tured data sources to refine retrieval and reasoning. Recently,
knowledge graphs have been proposed for RAG to enable
structured relationships and multi-hop retrieval [7, 9]. How-
ever, RAG remains dependent on the quality of its retrieval
mechanism and the underlying index, motivating our design
wherein RAG serves as the immutable storage layer while
offloaded data is managed through specialized adapters.

2.3 Updateable Memory and Knowledge
Editing

Recent work has explored direct in-model knowledge editing
techniques that enable targeted modifications of a model’s
internal representations without full retraining [6, 23]. These
methods allow models to correct factual errors or incor-
porate new information with minimal disruption to their
existing knowledge. In parallel, researchers have revisited
differentiable memory architectures, such as Neural Tur-
ing Machines [5] and Memory Networks [21], to integrate
persistent, updateable state into large language models. Al-
though scaling these architectures to current model sizes
remains challenging, they offer valuable insights into design-
ing systems that continuously adapt and refine their stored
knowledge.

2.4 Low-Rank Adaptation
LoRA offers an efficient method for adapting large language
models by injecting small trainable low-rank matrices into
the network while keeping the base model weights fixed [4,

May the Memory Be With You EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

10]. This approach dramatically reduces the number of pa-
rameters that need to be updated and the associated compu-
tational cost, making it an ideal mechanism for incorporat-
ing persistent state into LLMs. Unlike fine-tuning the entire
model, which introduces significant overhead and reduces
flexibility, LoRA provides a lightweight and modular alter-
native. Adapters can be easily updated or deleted without
affecting the base model, whereas continuously updating
all model weights would be computationally expensive and
cumbersome to manage. Recent work has begun exploring
using LoRA adapters for capturing and maintaining persis-
tent, user-specific knowledge [11]. While the mathematical
details of LoRA are beyond the scope of this workshop paper
and not required for comprehension, its practical utility lies
in enabling fine-tuning in scenarios where full model updates
are impractical. Our framework leverages LoRA adapters to
encode semantically grouped, persistent information, en-
abling efficient and modular updates without the overhead
of full model retraining.

2.5 Log-Structured Merge Trees
LSM trees are a well-established data structure to optimize
write-intensive workloads by maintaining a hierarchical stor-
age system [14, 17]. In an LSM tree, recent data is stored in
an in-memory component (akin to a memtable) and period-
ically flushed to disk as sorted SSTables. This hierarchical
compaction process enables efficient updates while ensuring
data integrity. We draw an analogy between LSM trees and
the system proposed in this paper, notably with respect to
how contextual knowledge is managed, flushed, and com-
pacted throughout the system’s lifecycle.

2.6 Towards Stateful LLMs
Viewed as lossy compressed databases, LLMs capture vast
amounts of knowledge but do so in a static and approximate
manner [18, 19]. Without explicit mechanisms for updat-
ing their internal state and inserting new knowledge, LLMs
become outdated and struggle with maintaining extensive
contexts over time.
The framework presented in this paper aims to bridge

this gap by integrating RAG, LoRA, and hierarchical storage
mechanisms to provide a robust foundation for developing
stateful LLMs. By addressing the limitations of existing ap-
proaches, our framework offers a scalable solution for man-
aging dynamic, evolving state information in AI systems.

3 System Design
Our system efficiently integrates short-term contextual un-
derstanding with long-term knowledge retention, enabling
stateful and personalized interactions. The architecture com-
bines RAGwith LoRA-based adapters, creating a hierarchical

storage system where the recent state is retrieved from the
RAG knowledge base, and the older state is encoded into
semantically grouped LoRA adapters.

Figure 1 illustrates the system’s architecture and the flow
of a user query through its main components. When a user
submits a query, such as "Suggest a hotel and activities for
my upcoming trip, preferably near the Eiffel Tower," the
system processes it through several steps. First, the query is
decomposed into core requests, transient instructions, and
knowledge records. The knowledge records are stored in the
knowledge base, which periodically flushes and trains new
adapters in the background (not shown in the figure). The
system then retrieves relevant knowledge records from the
knowledge base and dynamically loads semantically similar
adapters. Combined with the query and transient data, these
components are used to construct an augmented prompt,
while the LoRA adapters dynamically augment the LLM to
generate the response.
This design ensures efficient retrieval of relevant knowl-

edge, dynamic adapter loading, and the generation of tailored
responses. The systemmaintains scalability and performance
by periodically compacting and offloading knowledge into
adapters while continuously updating its state based on past
interactions. Although the adapters in the figure are labeled
with broad categories (e.g., Dining or Cultural Activities), in
practice, such groupings emerge from automatic clustering
based on semantic vectors. To reduce clutter in Figure 1, of-
floaded records are omitted, and detailed knowledge records
are summarized within the adapters.
To illustrate the system’s stateful design, we assume the

user had the following prior interactions before issuing the
Paris travel query:

• “What are some good museums to visit in Rome?”
• “Find me a food tour in Florence with wine tasting.”
• “I prefer staying in 4-star hotels.”
• “What are some Michelin-starred restaurants in NYC?”
• “Plan a weekend in Barcelona focused on art and food.”

These interactions seeded the knowledge base with per-
sistent knowledge records and trained the LoRA adapters
shown in Figure 1. The system leverages this accumulated
knowledge in its responses to new queries.

3.1 Decomposition, Transformation, and
Loading

The system decomposes each query into three components:
the core query, which represents the main user request; tran-
sient instructions, which include query-specific details (e.g.,
“preferably near the Eiffel Tower”) that do not persist; and
knowledge records, which capture structured, reusable infor-
mation (none in our running example). While not shown
here, a possible knowledge record from the Paris travel query

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Chukwu, E and Bindschaedler, L

Stateful LLM
Decomposition / Transformation / Loading

Cultural Activities
Art galleries

Museums

User Query
“Suggest a hotel and activities for my upcoming trip,

preferably near the Eiffel Tower.”

Response
“Suggestions for your trip to Paris from April 1–April 7, 2025:
- Stay at Pullman Paris Tour Eiffel, a 4-star hotel, for $290 per night.
- Visit the Musée du Quai Branly and the Rodin Museum.
- Guided food tour in the Latin Quarter and dine at Le Jules Verne.

Travel
Budget < $300

Focus on quality and
location

4-star minimum

Dining
Local cuisine
Fine dining

Michelin restaurants

Query Executor

Trip dates: April 1 to April 7, 2025

Weather in Paris in April: 8°C low, 16°C high, 50mm rain

Knowledge Base

Adapter Manager

Figure 1: System architecture illustrating how a Paris
travel query is processed. The system combines contex-
tual knowledge records (e.g., trip dates with specialized
adapters (e.g., Cultural Activities, Travel) to generate a
personalized response.

could encourage the system to prefer hotels near landmarks
in the future. After decomposition, the transient instruc-
tions and knowledge records are further transformed, and
ambiguous references, such as “next Monday at 8,” are disam-
biguated into precise formats to ensure consistent internal
representation.

3.2 Knowledge Base for RAG
The Knowledge Base is the primary layer of persistent stor-
age, where knowledge records are appended but never re-
moved, ensuring an immutable history. It supports a RAG
process, where queries trigger a semantic-retrieval step to
fetch relevant key–value knowledge records. For example,
the record "Trip dates -> April 1 to April 7, 2025" is retrieved
based on its similarity to the query and passed to the query
executor. While Figure 1 simplifies the representation by
omitting offloaded knowledge records, all data reside in the
Knowledge Base.

3.3 Adapter Manager
The second persistence layer consists of LoRA adapters,
which dynamically fine-tune the base LLM without alter-
ing it. After new key-value knowledge records are added
to the Knowledge Base, they are periodically offloaded into

adapters, where each record is transformed into a fine-tuning
sample (e.g., “Instruction: [key] Response: [value]”). Once
an adapter has learned a knowledge record, it is marked
as “offloaded,” and the RAG process no longer retrieves it
directly from the Knowledge Base. We combine the knowl-
edge records used to train an adapter to create an embedding
corresponding to that adapter’s signature, which the sys-
tem stores. For each query, the Adapter Manager evaluates
adapters’ signatures by semantic similarity to the query, dy-
namically loading the top𝐾 adapters with a similarity higher
than threshold𝑇𝐿 to work alongside the base LLM in generat-
ing the response. We use a weighted combination of adapters
based on similarity scores. In the example from Figure 1, the
“Travel” and “Cultural Activities” adapters are selected to
augment the LLM. An interesting property of LoRA adapters
is that, unlike SStables in an LSM tree, they do not grow in
size with additional data.

3.4 Query Executor
The Query Executor orchestrates the final response genera-
tion by combining multiple data sources: it retrieves relevant
non-offloaded knowledge records from the Knowledge Base
through semantic similarity (e.g., “Trip dates -> April 1 to
April 7, 2025”), loads appropriate adapters selected by the
Adapter Manager (such as “Travel” and “Cultural Activities”),
and merges them with the base model. The Executor then
constructs a final prompt by combining the user’s core query
with all contextual elements, passing this to the adapter-
augmented LLM to generate a personalized response incor-
porating current and historical knowledge.

3.5 Flushing and Compaction
Our system draws inspiration from LSM trees to maintain
efficiency through periodic background adaptermanagement
operations. When newly accumulated key-value knowledge
records reach a fixed threshold, 𝑇𝐹 (e.g., 100 records), they
are flushed into new adapters.
Each adapter is associated with an embedding signature,

and the system uses a fixed threshold,𝑇𝐶 , to determine when
to compact adapters. If the similarity between two adapters
exceeds 𝑇𝐶 , the system retrieves the original knowledge
records from the knowledge base, retrains a single consol-
idated adapter, and replaces the old ones. This approach
prevents the proliferation of numerous small adapters while
ensuring that knowledge remains cohesive and consistent.

Looking ahead, we plan to introduce additional triggers for
compaction, such as detecting outdated or conflicting knowl-
edge records to trigger compaction and clean up. Usage-
based compaction, where frequently used adapters may be
merged, and manual compaction triggers could also be in-
corporated. Currently, the system does not address scenarios

May the Memory Be With You EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

where compacting two adapters would exceed the maximum
allowable number of knowledge records per adapter to pre-
vent overwhelming a single adapter. Future enhancements
could involve detecting when compaction would breach this
limit and dynamically adjusting the similarity threshold to
avoid merging the adapters.

4 Implementation
Our stateful LLM is implemented in Python as a dedicated
class that encapsulates the base language model from the
Transformers library (v4.48.3). It structures query inputs
using a custom Python data class (comprising the query
text, domain context, and persistent knowledge), manages
token counts and context windows, and leverages Accelerate
(v1.3.0) for distributed training while coordinating data re-
trieval from the Knowledge Base and the Adapter Manager
for prompt assembly.

Knowledge Base Module. Knowledge records are stored as
versioned JSON records with contextual tags and indexed
using FAISS (v1.9.0) for efficient semantic retrieval; record
embeddings are generated via Sentence-transformers (v3.4.1)
based on a BERT model, with cosine similarity used to com-
pare embeddings.

Adapter Manager Module. Developed with PyTorch and
utilizing PEFT (v0.13.2) for LoRA adapters. We currently use
𝐾 = 4 and fixed thresholds for adapter loading (𝑇𝐿 = 0.7),
flushing (𝑇𝐹 = 100), and compaction (𝑇𝐶 = 0.5).

5 Evaluation
In this section, we conduct a comprehensive evaluation of our
proposed stateful LLM framework. Our focus is on answering
the following research questions:

RQ1: How does our stateful LLM solution, which integrates
RAG and LoRA adapters, compare with a full-context
LLM and a RAG-based LLM in terms of state retention
and response accuracy? (§5.2)

RQ2: What are our state management approach’s computa-
tional overheads and efficiency benefits, particularly re-
garding the cost of training andmerging LoRA adapters
versus traditional context handling? (§5.3)

5.1 Experimental Setup
Datasets. In our experiments, we utilize two sufficiently

large real-world datasets to effectively stress-test our sys-
tem. The first dataset is AG News [1], which comprises 120k
news articles categorized into different topics. The second
is 20 Newsgroups [12], a collection of approximately 20k
newsgroup entries from 20 different newsgroups. We adapt
these datasets for our purposes by manually augmenting

them with questions to obtain question-answering datasets
with extensive contexts.

Baselines. We compare against two baseline systems:

• LLM with Full Context (LLM+C): A model that pro-
cesses queries by directly incorporating the entire con-
text into the LLM’s input without external state man-
agement.

• LLM with RAG (LLM+RAG): A retrieval-augmented
generation system that manages persistent state via
an external knowledge base.

Metrics. We use the following metrics:

• BERT Score: Measures the semantic similarity be-
tween the response and the ground truth, providing a
quantitative evaluation of response quality [24].

• Knowledge Retention: Evaluates the fraction of facts
accurately recalled and incorporated into the response,
reflecting the system’s ability to retain and retrieve
persistent context.

• Time: Includes both training and inference time, de-
pending on the context, to assess the computational
efficiency of the system, including the cost of training
and merging LoRA adapters.

Models. We conduct our experiments using the Llama fam-
ily of models [20], specifically llama-2-7b-chat-hf.

Hardware & Configuration. We use a machine running
Debian Ubuntu and equipped with two H100 GPUs.

5.2 Overall Performance
In this set of experiments, we aim to answer RQ1 by eval-
uating the overall performance of our system across two
datasets: AG News and 20 Newsgroups. We replay a subset
of prompts in the dataset and collect the responses. Our objec-
tive is to assess how effectively our stateful LLM framework
maintains persistent state and generates accurate responses.
We also measure the average response for each system. We
compare our stateful LLM framework with our two base-
lines, LLM with Full Context (LLM+C) and LLM with RAG
(LLM+RAG). We show the results in Figure 2.

Overall, our stateful LLM approach outperforms both the
full-context and RAG baselines in knowledge retention. It
also executes significantly faster as, despite the overheads
introduced by our framework, we drastically reduce the con-
text size with LoRA adapters. The BERT score is lower for
stateful LLM in the second dataset due to a cutoff in the
maximum number of tokens. This last result warrants fur-
ther future investigation as it indicates that the stateful LLM
approach tends to generate longer responses.

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Chukwu, E and Bindschaedler, L

(a) AG News.

(b) 20 Newsgroups.

Figure 2: Comparison between our Stateful LLM, an LLM using only context (LLM+C), and an LLM using context
and RAG (LLM+RAG) for different datasets. The x axis shows context sizes from 50 to 200 knowledge records.

5.3 Microbenchmark
To address RQ2, we conduct a microbenchmark to quan-
tify the trade-offs between the overhead introduced by state
management and the efficiency gains achieved through our
approach. These experiments focus on three aspects: the
inference time when using a full LLM context versus dy-
namically loading knowledge records and adapters (response
time), the computational cost of training LoRA adapters com-
pared to maintaining a full context (flushing time), and the
time required for adapter compaction (compaction time). We
use the AG News dataset in this experiment. We present the
results of this microbenchmark in Table 1.

Operation Stateful LLM LLM+C
Response Time 0.8 s 9.5 s
Flushing Time 65 s N/A
Compaction Time 86 s N/A

Table 1:Microbenchmark showing the time of different
operations for our Stateful LLM and LLM+C.

These results show that, while a modest cost is associated
with training and compacting adapters, these overheads are

offset by a shorter inference time. While LoRA adapters in-
troduce a marginal computation overhead, they compensate
for it by using parametric memory, drastically reducing the
context size and improving inference time when the context
is large, such as in this experiment.

6 Discussion and Future Directions
Applications and Use Cases. While much of our discussion

has focused on personalized contexts, the applicability ex-
tends well beyond user preference storage. Incrementally
updating adapters based on newly ingested data is relevant
for organizational knowledge bases, task automation agents
that evolve with experience, or scenarios where large vol-
umes of streaming data must be distilled into actionable
insights. These adapters effectively become layered "mem-
ories" for the LLM, enabling it to serve as a continuously
learning system. For example, an enterprise environment
could use adapters to accumulate industry-specific knowl-
edge over time, and an autonomous planning agent could
rely on adapters to recall operational context in disaster relief
or strategic settings.

May the Memory Be With You EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Generalizability. While our framework shows promising
results in two datasets, its generalizability to diverse work-
loads remains uncertain. Many real-world applications may
involve unpredictable queries, rapidly evolving knowledge,
or highly specialized contexts that may challenge the scal-
ability and adaptability of our approach. Addressing these
challenges and evaluating the framework across diverse sce-
narios is an important direction for future work.

Larger Models. Our framework’s scalability becomes in-
creasingly advantageous as the size of the model grows.
LoRA adapters offer substantially better scaling properties
than full-context approaches because they modify only a tiny
fraction of parameters (typically < 1%). Although inference
still requires the full model, the training time scales primarily
with the adapter size rather than with the base model dimen-
sions. Critically, the rank parameter (𝑟) in LoRA – which
determines adapter complexity – can remain constant re-
gardless of the base model size, making relative efficiency
gains even greater for larger models, where full fine-tuning
would be prohibitively expensive. As models scale, context
window limitations become more restrictive relative to the
model’s capacity, further highlighting our system’s advan-
tages. The compression of knowledge into parameter space
rather than token space provides an efficient solution to the
quadratic attention complexity problem that plagues large-
context designs.

Adapter Recall and Context Pinning. A key question arises
as to whether LoRA adapters can reliably recall all the in-
formation on which they have been trained. Since the LoRA
mechanism is inherently lossy, specific details may not be
perfectly retained, leading to possible omissions. This chal-
lenge mirrors similar recall shortcomings in RAG, where
knowledge retrieval depends on semantic alignment with
the query. In practice, some knowledge records or user pref-
erences may be so critical that they must never be dropped,
and the requirements of specific critical applications may
not be compatible with our approach. One solution is to ex-
plicitly pin these critical records to always be included in
the final context rather than relying solely on an adapter’s
learned parameters. Nonetheless, these approaches do not
fully guarantee incorporation into the final response, given
that an LLM may sometimes overlook or misconstrue even
pinned information.

Dynamic Thresholds and Multi-Level Retrieval. Related to
recall is the question of how thresholds for selecting adapters
and knowledge records should adapt. Currently, adapter se-
lection is based on static similarity, but in dynamic applica-
tions, adjusting thresholds based on context, user-defined
preferences, or computation/memory budget can improve
retrieval precision and results. In more complex workflows,

adapters may generate additional context that is itself used
to trigger supplementary knowledge retrieval or adapter
loading, forming a multi-level retrieval pipeline. Determin-
ing how far such recursive expansion should go, especially
under tight latency or cost constraints, is an open research
challenge.

Potential for Context Generation. A promising future direc-
tion involves treating adapters not only as parameter-space
storage but also as mini compressed databases that can out-
put relevant knowledge pieces directly. Rather than merging
adapters into the base LLM for inference, these adapters
could themselves generate textual summaries or expansions,
which would then be fused into the final context. This dual
use as a learned memory layer and a content generator could
help integrate distributed knowledge across adapters. How-
ever, designing the control logic, ensuring consistency across
outputs, and preventing redundancy remain significant chal-
lenges.

Privacy and Knowledge Deletion. Our system’s design raises
legitimate questions about privacy and data governance.
Fine-tuning adapters to encode sensitive knowledge can lead
to unwanted data retention, making it non-trivial to fully
"delete" knowledge once learned. Methods for selectively re-
moving records or for marking data as non-trainable would
be essential for real-world adoption in privacy-sensitive en-
vironments. Adding a robust privacy-preserving layer to the
adapter training and compaction processes is a major avenue
of future work.

Outlook. The proposed system unlocks a broad range of
possibilities for making LLM-based solutions more adaptive
and context-aware. Many challenges remain, including en-
suring precise recall, managing privacy, handling large-scale
compaction without compromising performance, and opti-
mizing adapter merging strategies to balance efficiency with
rapid updates. In future work, we intend to refine multi-level
retrieval pipelines, develop strategies for selective data reten-
tion and removal, and explore adapter-generated contexts
for richer integrations. Through these advancements, we aim
to realize the vision of an infinitely updatable, stateful AI
framework that efficiently and responsibly accommodates
both personal and organizational needs.

7 Conclusion and Future Work
In this paper, we present a novel framework for transforming
stateless LLMs into efficient, stateful systems. By integrating
RAG with LoRA techniques, our approach enables LLMs to
maintain and update persistent knowledge in a hierarchi-
cal fashion, drawing inspiration from log-structured merge
trees. The evaluation demonstrates that our stateful LLM
framework achieves superior state retention and response

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Chukwu, E and Bindschaedler, L

accuracy compared to traditional full-context and RAG-based
methods while incurring minimal computational overhead.

Although preliminary, we believe this work establishes a
foundation for stateful, infinitely updatable LLMs, paving
the way for truly adaptive and personalized AI systems.

Acknowledgments
We would like to thank our anonymous reviewers as well
as Chongyang Xu, Tejas Harith, and Saumya Chaturvedi for
their help and feedback that improved this work.

References
[1] 2025. http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.

html.
[2] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2021. Longformer:

The Long-Document Transformer. arXiv preprint arXiv:2004.05150
(2021).

[3] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and
Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. 2978–
2988.

[4] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.
2024. Qlora: Efficient finetuning of quantized llms. Advances in Neural
Information Processing Systems 36 (2024).

[5] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing
Machines. arXiv preprint arXiv:1410.5401 (2014).

[6] Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-
Wei Chang, and Nanyun Peng. 2024. Model editing harms general
abilities of large language models: Regularization to the rescue. In
Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing. 16801–16819.

[7] Maria Gutierrez, Kevin Lee, and Ling Zhao. 2024. HippoRAG: Hi-
erarchical Knowledge Graphs for Enhanced Long-Term Context in
Retrieval-Augmented Generation. In Proceedings of the 2024 Conference
on Neural Information Processing Systems.

[8] Kelvin Guu, Kenton Lee, Michael Tung, Panupong Pasupat, and Wen-
tau Chang. 2020. REALM: Retrieval-Augmented Language Model
Pre-Training. In International Conference on Machine Learning. doi:10.
48550/ARXIV.2002.08909

[9] Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia
Lei, Mahantesh Halappanavar, Ryan A Rossi, Subhabrata Mukherjee,
Xianfeng Tang, et al. 2024. Retrieval-augmented generation with
graphs (graphrag). arXiv preprint arXiv:2501.00309 (2024).

[10] Edward J Hu, Yelong Shen, Philip Wallis, Zeyuan Allen-Zhu, Yuxin Li,
and LiangWang. 2022. LoRA: Low-RankAdaptation of Large Language
Models. In International Conference on Learning Representations. doi:10.
48550/ARXIV.2106.09685

[11] Alex Kai, Ming Chen, and Ravi Patel. 2024. MiLP: Modular Low-
Rank Personalization for Persistent Memory in Language Models. In
Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing.

[12] Ken Lang. 1995. NewsWeeder: Learning to filter netnews. In Proceed-
ings of the 12th International Conference on Machine Learning. 331–339.

[13] Patrick Lewis, Ethan Perez, Adriano Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Myle Lewis, Luke Zettlemoyer, and Sebas-
tian Riedel. 2020. Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In Advances in Neural Information Processing
Systems. doi:10.48550/ARXIV.2005.11401

[14] Cheng Luo and Michael J Carey. 2019. LSM-based Storage Techniques:
A Survey. Comput. Surveys 52, 3 (2019), 1–34. doi:10.1145/3323215

[15] Juan Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald.
2020. On Faithfulness and Factuality in Abstractive Summarization.
In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. 1906–1919.

[16] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christo-
pher D Manning. 2021. Fast model editing at scale. arXiv preprint
arXiv:2110.11309 (2021).

[17] Patrick O’Neil, Edward Cheng, Don Gawlick, and Elizabeth O’Neil.
1996. The log-structured merge-tree (LSM-tree). In Acta Informatica,
Vol. 33. Springer, 351–385. doi:10.1007/s002360050048

[18] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yaz-
dani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin,
Jean Maillard, et al. 2020. KILT: a benchmark for knowledge intensive
language tasks. arXiv preprint arXiv:2009.02252 (2020).

[19] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis,
Alexander Bakhtin, Yuxiang Wu, and Noah Miller. 2019. Language
Models as Knowledge Bases?. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. 246–257.

[20] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971 (2023).

[21] Jason Weston, Sumit Chopra, and Antoine Bordes. 2014. Memory
Networks. arXiv preprint arXiv:1410.3916 (2014).

[22] Felix Wu et al. 2022. Memorizing Transformers. In Proceedings of the
2022 International Conference on Machine Learning.

[23] Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li,
Shumin Deng, Huajun Chen, and Ningyu Zhang. 2023. Editing large
languagemodels: Problems, methods, and opportunities. arXiv preprint
arXiv:2305.13172 (2023).

[24] Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger,
and Yoav Artzi. 2020. BERTScore: Evaluating Text Generation with
BERT. In International Conference on Learning Representations. https:
//openreview.net/forum?id=SkeHuCVFDr

Received 24 February 2025; revised 11March 2025; accepted 3March
2025

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://doi.org/10.48550/ARXIV.2002.08909
https://doi.org/10.48550/ARXIV.2002.08909
https://doi.org/10.48550/ARXIV.2106.09685
https://doi.org/10.48550/ARXIV.2106.09685
https://doi.org/10.48550/ARXIV.2005.11401
https://doi.org/10.1145/3323215
https://doi.org/10.1007/s002360050048
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Long-Term Context in LLMs
	2.2 Retrieval-Augmented Generation
	2.3 Updateable Memory and Knowledge Editing
	2.4 Low-Rank Adaptation
	2.5 Log-Structured Merge Trees
	2.6 Towards Stateful LLMs

	3 System Design
	3.1 Decomposition, Transformation, and Loading
	3.2 Knowledge Base for RAG
	3.3 Adapter Manager
	3.4 Query Executor
	3.5 Flushing and Compaction

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Microbenchmark

	6 Discussion and Future Directions
	7 Conclusion and Future Work
	Acknowledgments
	References

