
Everything You Wanted to Know About Graph Neural Network
Partitioning (But Were Afraid to Ask)

Chongyang Xu
cxu@mpi-sws.org

Max Planck Institute for Software Systems
Saarbrücken, Saarland, Germany

Laurent Bindschaedler
bindsch@mpi-sws.org

Max Planck Institute for Software Systems
Saarbrücken, Saarland, Germany

Abstract

Graph Neural Networks (GNNs) are the de facto models for deep
learning on graph datasets, but trainingGNNs on large-scale datasets
remains a challenge. Data partitioning plays a critical role in dis-
tributed mini-batch GNN training, as it directly impacts memory
usage, training speed, and model accuracy. This survey comprehen-
sively compares prevalent partitioning strategies in the Deep Graph
Library (DGL) framework across standard benchmarks and mod-
els of varying depths. We systematically analyze aspects such as
partition sizes, training times, memory overhead, and the accuracy
associated with each partitioning method. Through this analysis,
we uncover practical insights and the inherent trade-offs of these
strategies. Our findings reveal surprising cases where simpler par-
titioning approaches outperform more sophisticated schemes. We
conclude by offering practical guidelines for GNN partitioning.

CCS Concepts

• Computing methodologies→ Neural networks; Distributed
algorithms; Parallel computing methodologies; • Informa-

tion systems → Data analytics; • Theory of computation→
Graph algorithms analysis.

Keywords

Graph Neural Networks; Graph Partitioning; Distributed Training;
Scalability; Load Balancing; Memory Efficiency; Empirical Evalua-
tion; Benchmarking
ACM Reference Format:

Chongyang Xu and Laurent Bindschaedler. 2025. Everything YouWanted to
Know About Graph Neural Network Partitioning (But Were Afraid to Ask).
In 8th Joint Workshop on Graph Data Management Experiences Systems
(GRADES) and Network Data Analytics (NDA) (GRADES-NDA ’25), June
22–27, 2025, Berlin, Germany. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3735546.3735857

1 Introduction

Graph Neural Network (GNN) partitioning has emerged as an es-
sential technique for efficiently training large-scale graph datasets.
GNNs are the predominant models used for machine learning tasks
on graph-structured data, such as social networks [10, 13], rec-
ommendation systems [9, 18], and biological interactions [3, 5].
As real-world graphs increasingly scale to billions of nodes and

This work is licensed under a Creative Commons Attribution 4.0 International License.
GRADES-NDA ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1923-3/2025/06
https://doi.org/10.1145/3735546.3735857

trillions of edges, their storage and computational requirements
often exceed the memory capacity of modern GPUs and high-end
commercial machines. Therefore, effective partitioning is not just
beneficial but critical for managing memory constraints, ensuring
computational efficiency, and minimizing communication overhead
in distributed training scenarios.

Traditionally, graph partitioning strategies, such as edge-cut
and vertex-cut methods, have been used to reduce communication
by minimizing the number of edges or vertices that span across
partitions. Edge-cut methods focus on partitioning nodes, distribut-
ing them across partitions, while vertex-cut methods split edges,
potentially replicating nodes across partitions. While effective for
classical graph processing, these approaches face challenges in
GNNs due to the inherent multi-hop neighborhood aggregation
and the need to synchronize topology and high-dimensional feature
data, leading to significant overhead. State-of-the-art techniques,
such as Metis [7] and vertex-cut heuristics, aim to balance workload
and reduce communication across partitions but often struggle with
trade-offs in memory usage and accuracy.

This survey systematically reviews existing partitioning strate-
gies specifically tailored to mini-batch GNN training, providing
empirical insights into their practical effectiveness. Rather than
introducing a single novel partitioning approach, our contribution
thoroughly analyzes and compares various established methods to
highlight their relative strengths and weaknesses. By consolidating
empirical evidence across diverse configurations, we demonstrate
that there is no one-size-fits-all solution. Instead, the effectiveness
of a partitioning strategy depends on specific trade-offs between key
performance metrics such as partition size, replication factor, load
balance, epoch time, memory usage, and accuracy. This analysis
enables us to distill generalized lessons and identify best practices
tailored to different scenarios.

To rigorously evaluate and support our comparative analysis,
we utilize widely recognized benchmark datasets, namely OGBN-
Products [1] and OGBN-Papers [2], tested across a spectrum of
partitioning configurations. We benchmark multiple representa-
tive GNN architectures, specifically Graph Convolutional Networks
(GCN) [8] and GraphSAGE [4], with varying depths. Our empiri-
cal evaluations measure critical performance indicators, including
partition time, average epoch time, memory usage, and accuracy
metrics. By conducting these evaluations within the widely adopted
DGL framework [14] and systematically comparing existing par-
titioning methods such as Metis, random partitioning, vertex-cut
variants, and others, we provide comprehensive, reproducible evi-
dence for our findings.

Our results reveal several notable trends and insights. Random
partitioning, despite its simplicity, often outperforms advanced

https://orcid.org/0009-0007-0660-8729
https://orcid.org/0000-0003-0559-631X
https://doi.org/10.1145/3735546.3735857
https://doi.org/10.1145/3735546.3735857
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3735546.3735857
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3735546.3735857&domain=pdf&date_stamp=2025-06-30


GRADES-NDA ’25, June 22–27, 2025, Berlin, Germany Chongyang Xu and Laurent Bindschaedler

methods such as Metis in terms of accuracy and load balancing.
However, advanced methods can be beneficial when preserving
connectivity is critical. In addition, creating an excessive number
of partitioning leads to significant accuracy degradation due to
fragmentation, and 1-hop halo expansions introduce substantial
memory overhead with little to no benefit. Finally, balancing load
distribution and minimizing communication overhead remain key
challenges, with simpler methods often providing more consistent
performance. Overall, these findings emphasize that there is no one-
size-fits-all solution, and partitioning strategies must be carefully
tailored to the specific model, dataset, and resource constraints.

For instance, simple random partitioning methods often outper-
form advanced techniques, due to better load balancing and reduced
memory overhead. Specifically, random partitioning demonstrates
comparable or superior accuracy to sophisticated methods, particu-
larly in scenarios with a moderate number of partitions. Moreover,
we observe near-linear speedups in training performance as parti-
tion numbers increase to an optimal threshold (typically between 16
and 64), beyond which diminishing returns and even performance
degradation may occur. Finally, deeper GNN architectures benefit
more significantly from effective partitioning, as their larger recep-
tive fields amplify communication overhead, which partitioning
helps mitigate.

This paper makes the following key contributions:
• A comprehensive survey and empirical comparison of GNN
partitioning strategies for mini-batch distributed training,

• The identification of several surprising insights into the in-
terplay between partitioning complexity, memory overhead,
training speed, and accuracy.

• Empirical guidelines and recommendations for selecting ef-
fective partitioning strategies.

The remainder of this paper is organized as follows: Section 2
begins by introducing some background concepts of GNNs and
partitioning. Building upon this, Section 3 delves into specific par-
titioning methods that are currently employed. Next, Section 4
describes our experimental setup, which sets the stage for the empir-
ical results and observations presented in Section 5. Subsequently,
Section 6 highlights several surprising findings drawn from our
analysis, leading into Section 7, which provides practical guidelines
and actionable recommendations for practitioners. Finally, Section 8
concludes the survey by summarizing key insights and outlining
promising directions for future research.

2 Background

2.1 GNN Fundamentals

Graph Neural Networks (GNNs) are neural network architectures
designed specifically to process graph-structured data, integrating
node features and graph topology through message-passing mecha-
nisms. In message passing, each node iteratively aggregates feature
information from its neighbors, transforming and updating its rep-
resentation across multiple neural layers. This aggregation allows
GNNs to capture increasingly broader context, as nodes incorpo-
rate features from multi-hop neighborhoods. Thus, multi-layer net-
works—such as 2-layer, 3-layer, and 4-layer GNNs—progressively
extend the receptive field, exponentially increasing the number of
neighbors accessed at each additional layer. In contrast to classical

graph analytics, which typically involve deterministic traversals
with minimal or no features, GNN workloads incorporate complex,
high-dimensional embeddings, significantly amplifying computa-
tional complexity and memory demands.

2.2 Partitioning Basics

Graph partitioning strategies for distributed GNN training are pri-
marily categorized into two types: edge-cut and vertex-cut. Edge-
cut partitioning assigns nodes to different partitions, cutting edges
whose endpoints reside in distinct partitions. Vertex-cut partition-
ing, by contrast, assigns edges to partitions, potentially replicating
nodes whose edges span multiple partitions. Partitioning strategies
introduce key concepts like halo nodes, replication factor, and load
balancing. Halo nodes refer to nodes connected to a partition but
residing externally, often included by extending partition bound-
aries by one or more hops. Such boundary extensions increase the
replication factor, measuring data redundancy across partitions.
Unequal replication or uneven distribution of training nodes across
partitions can create significant load imbalance, affecting compu-
tational efficiency. Due to the multi-hop message passing nature
of the computation, efficient partitioning is crucial to minimize
communication overhead and manage memory usage effectively in
mini-batch GNN training.

2.3 Scope of This Survey

This survey exclusively addresses mini-batch GNN training with
partition-based data parallelism, where subgraphs and associated
node features are sampled and processed in parallel across separate
partitions. Unlike full-graph training frameworks (e.g., ROC[6] or
NeutronStar[15]), which handle entire graph datasets simultane-
ously, mini-batch approaches iteratively process smaller subsets
of the graph, making them better suited for large-scale datasets.
Full-graph GNN training falls beyond the scope of this survey.

3 Partitioning Strategies

In this section, we describe the primary partitioning methods used
in distributed mini-batch GNN training and covered in this survey.

3.1 Edge-Cut Methods

Random (0-hop, 1-hop). Vertices are randomly assigned to parti-
tions, with edges connecting nodes across partitions considered as
edge cuts. Optionally, partitions can include one-hop halo nodes,
i.e., vertices directly connected to partition boundaries.

Metis (0-hop, 1-hop). Metis [7] is a partitioning strategy that aims
to minimize edge cuts while maintaining balanced partition sizes.
It supports an optional one-hop halo to include boundary edges.

3.2 Vertex-Cut Methods

VCR (random). VCR randomly assigns edges to partitions. Nodes
whose edges span multiple partitions are replicated, designating
the partition in which a node first appears as its primary location.
This approach may result in substantial replication, particularly for
high-degree nodes.

VCO (oblivious). VCO assigns edges to partitions using a heuristic
that favors partitions already containing one or both vertices of the



Everything You Wanted to Know About Graph Neural Network Partitioning (But Were Afraid to Ask) GRADES-NDA ’25, June 22–27, 2025, Berlin, Germany

edge. When multiple partitions score equally, a balance heuristic
selects partitions with fewer edges [16]. This reduces vertex cuts
while maintaining balanced partition sizes.

VCD (degree-based). Similar to VCO, VCD uses a degree-based
heuristic to preferentially assign edges to partitions containing the
lower-degree vertex. This strategy minimizes cuts for low-degree
vertices, ensuring more connected subgraphs and balanced edge
distribution across partitions.

VCR-g (chunk grouping). The VCR-g approach initially parti-
tions the graph into many small random chunks using the VCR
strategy. These chunks are subsequently grouped randomly into
larger partitions for each training epoch, enhancing flexibility while
maintaining structure.

3.3 Other Approaches

ST (spanning-tree). The STmethod employsmulti-source breadth-
first search (BFS) to generate a random spanning tree replicated
across all partitions. Edges not included in the spanning tree are
randomly assigned. ST maintains intra-partition connectivity while
controlling partition sizes.

NS (neighbor sampling). NS beginswith randomly selected source
nodes, which are assigned to partitions, then explores multi-hop
neighborhoods via random sampling with progressively decreas-
ing sampling ratios across hops [17]. Unlike locality-optimizing
approaches, NS depends solely on random sampling.

BGL (BFS-like). BGL [11] first uses BFS to generate initial graph
partitions from randomly chosen nodes, stopping expansion upon
reaching a maximum block size or lack of neighbors. Subsequently,
small blocks are merged through a multi-level coarsening phase. A
greedy heuristic assigns these merged blocks to partitions based
on connectivity, size, and training nodes. The final partitions are
produced through an uncoarsening step. A related community-
based partitioning method is discussed in [12].

4 Experimental Setup

Datasets. We use two standard benchmark datasets for our ex-
periments: OGBN-Products [1] and OGBN-Papers [2], whose char-
acteristics are shown in Table 1 and are representative of typical
GNN datasets. Experiments are carried out using multiple partition
configurations: specifically, 1, 4, 16, 64, 256, and 1024 partitions.

Dataset Vertices Edges Features Total Size

OGBN Products [1] 2.34M 58.99M 100 4.4 GB
OGBN Papers100M [2] 105.92M 1.51B 128 103.3 GB

Table 1: Datasets used in the experiments.

GNN Models and Depths. Our evaluation includes two widely-
used GNN model architectures, GraphSAGE and Graph Convolu-
tional Networks (GCN), with network depths of 2, 3, and 4 lay-
ers. We designate the corresponding model architecture scheme
and depth as <model>-<depth>. For example, GraphSAGE-2 corre-
sponds to GraphSAGE with 2 layers.

Partitioning Schemes. All experiments are performed using the
widely-used Deep Graph Library [14] (DGL). We utilize DGL’s
built-in implementations for Random and Metis partitioning. We

implement and integrate custom methods such as VCD, VCR-g, ST,
and NS directly into DGL. In addition, we reimplement VCR, VCO,
and BGL methods within DGL to obtain consistent and comparable
results.

Configurations. Experiments include configurations for both 0-
hop and 1-hop partitioning. In the 0-hop setting, edges that cross
partition boundaries are excluded from partitions. In contrast, the
1-hop setting includes these edges, thereby adding halo nodes to
each partition. We designate the corresponding partitioning scheme
and number of hops as <scheme>-<#hops>. For example, Random-
0 corresponds to random partitioning with 0 hops (i.e., no halo
nodes) whereas Metis-1 corresponds to Metis partitioning with 1
hop. Note that our ST, NS, VCR-g, and BGL implementation do not
support halo nodes.

Metrics. We measure several performance indicators to evaluate
the partitioning methods:

• Partition size: Amount of data per partition required to
partition the dataset.

• Partition time: Time required to partition the dataset.
• Average epoch time: Time to complete one epoch of train-
ing across all partitions.

• Accuracy metrics: Training accuracy, validation accuracy,
and test accuracy to assess model performance.

Hardware Configuration. We execute all experiments on a cluster
of 8 identical machines. Eachmachine is equipped with 2 Intel CPUs
(Xeon Gold 6134M), 764 GB of DDR4 memory, and two Nvidia Tesla
V100 PCIe 32 GB GPUs. These machines are connected by 2× 10 GiB
network (joined as one bonding interface).

5 Evaluation and Observations

In this section, we systematically evaluate various partitioning
methods discussed previously. We first analyze how partitioning
strategies affect memory usage and resource utilization. Next, we
examine how mini-batch GNN training scales with different parti-
tions. Subsequently, we evaluate the impact of different partitioning
methods on model accuracy. Finally, we explore the trade-off be-
tween load balancing and communication overhead in partitioning.

5.1 Partition Sizes and Resource Utilization

Partitioning plays a critical role in determining the efficiency of
mini-batch GNN training by directly impactingmemory usage, com-
putational load balancing, and communication overhead. Smaller
partitions reduce memory constraints, balanced partitions enable
efficient parallel computation, and controlled replication minimizes
communication costs. However, achieving these goals simultane-
ously is challenging, as strategies may prioritize one aspect at the
expense of others. This section empirically evaluates how different
partitioning methods and configurations affect partition sizes and
resource utilization, providing insights into the trade-offs involved.

Results Overview. Figures 1 and 2 show the evolution of the
mean partition size with an increasing number of partitions for
OGBN-Products and OGBN-Papers, respectively, under various par-
titioning methods and halo-hop configurations. For transparency,
we also provide the exact partition sizes for OGBN-Products in



GRADES-NDA ’25, June 22–27, 2025, Berlin, Germany Chongyang Xu and Laurent Bindschaedler

Table 2. We omit these results for the other dataset due to space
constraints. Finally, we show the partitioning time taken by our
implementation of the different strategies in Table 3.

How effectively do different partitioning strategies reduce partition
sizes? Generally, partition sizes shrink effectively as the number
of partitions grows. However, several partitioning strategies yield
significantly larger partition sizes, up to three orders of magnitude
more than the smallest strategy. In particular, vertex-cut partition-
ing results in large partition sizes due to the replication of vertices
and associated features across nodes. In general, strategies that
involve a higher replication of nodes to improve locality during
training, including ST and NS, also suffer from larger partitions.

What is the memory overhead of expanding partition boundaries
(1-hop expansions)? We observe substantial increases in partition
size and memory usage with 1-hop expansions across all partition-
ing methods. This overhead is particularly severe for vertex-cut
methods (e.g., VCR-1, VCO-1, VCD-1) and approaches such as NS,
ST, and BGL, and makes it impossible to partition larger datasets
such as OGBN-Papers on a single machine as it runs out of memory
(shown as negative bars in Figure 1), even though the complete
dataset fits comfortably in main memory. The primary source of
memory overhead is the replication of node features required to
maintain boundary connections, highlighting a clear trade-off be-
tween improved local connectivity and increased resource demands.

How long do partitioning strategies take? Partitioning times de-
crease as the number of partitions increases, but the efficiency varies
significantly across methods. Random-0 consistently achieves the
fastest times, with minimal variance, while methods like Metis
and Random-1 take longer, particularly at lower partition counts.
Vertex-cut methods (e.g., VCO-1, VCD-1) exhibit the highest parti-
tioning times and remain slower even as the number of partitions
grows. Some partitioning strategies crash at high partition counts
due to memory requirements. While partitioning time may seem
less critical compared to training time, it is important to note that
the most expensive methods can take as much time as hundreds of
training epochs, making it essential to keep this overhead in mind
when selecting a partitioning strategy.

1 4 16 64 256 1024
Number of Partitions

100

101

102

103

Pa
rti

tio
n 

Si
ze

 (M
B)

Partition Methods
Random-0
Random-1
Metis-0
Metis-1
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
NS
ST
BGL

Figure 1: Partition size (MB) per number of partitions for the

OGBN Products dataset. The absolute values are in Table 2.

Number of Partitions
Method 1 4 16 64 256 1024
Random-0 4716.8 475.2 82.7 18.4 4.5 1.1
Random-1 4716.8 1675.6 484.0 136.9 37.7 9.9
Metis-0 4716.8 989.7 238.6 55.4 12.5 2.7
Metis-1 4716.8 1112.3 295.9 79.3 21.7 6.1
VCR-0 4222.0 1737.3 924.8 463.1 172.7 51.3
VCR-1 4222.0 4153.7 4101.7 2732.7 1874.7 399.3
VCO-0 4222.0 1433.6 497.6 169.3 53.0 15.0
VCO-1 4222.0 4026.8 3142.4 1410.2 650.3 249.4
VCD-0 4222.0 1435.9 501.4 175.8 59.8 18.0
VCD-1 4222.0 4030.0 3306.2 1758.7 1126.5 633.2
VCR-g 4222.0 1733.4 908.7 393.7 178.9 77.8
NS 2632.0 1817.1 1141.6 494.3 77.5 5.5
ST 4222.0 1890.1 1293.3 1139.3 1096.8 1058.8
BGL 4222.0 1458.1 534.2 171.4 49.1 19.3

Table 2: Partition sizes in MB for different number of parti-

tions for the OGBN Products dataset.

1 4 16 64 256 1024
Number of Partitions

10 2

10 1

100

101

102
Pa

rti
tio

n 
Si

ze
 (G

B)
Partition Methods

Random-0
Random-1
Metis-0
Metis-1
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
NS
ST
BGL

Figure 2: Partition size (MB) per number of partitions for

the OGBN Papers dataset. Negative values indicate an out-of-

memory error.

5.2 Impact of Partitioning on Scalability

Partitioning directly influences the scalability of GNN training by
balancing computation across partitions and minimizing communi-
cation overhead. Increasing the number of partitions reduces com-
putation time by shrinking partition sizes, but this benefit comes
with trade-offs, particularly for deeper GNN models. Deeper mod-
els require aggregating information from more distant neighbors,
which amplifies communication demands and increases sensitivity
to partitioning strategies. This section evaluates how partition-
ing methods and configurations impact scalability, focusing on
computation time, communication overhead, and the challenges
introduced by deeper GNN architectures.

Results Overview. Figure 3 shows the mean epoch time for train-
ing GraphSAGE and GCN models with 2, 3, and 4 layers using the
OGBN-Products dataset across different partitioning strategies and
with an increasing number of partitions.

How well does GNN training scale based on partitioning methods
and number of partitions? Epoch time generally decreases linearly
with the number of partitions for most partitioning methods, which
is consistent with our intuition that the epoch time is mostly driven



Everything You Wanted to Know About Graph Neural Network Partitioning (But Were Afraid to Ask) GRADES-NDA ’25, June 22–27, 2025, Berlin, Germany

Number of Partitions
Method 4 16 64 256 1024
Random-0 475.2 82.7 18.4 4.5 1.1
Random-1 1675.6 484.0 136.9 37.7 9.9
Metis-0 989.7 238.6 55.4 12.5 2.7
Metis-1 1112.3 295.9 79.3 21.7 6.1
VCR-0 1737.3 924.8 463.1 172.7 51.3
VCR-1 4153.7 4101.7 2732.7 1874.7 –
VCO-0 1433.6 497.6 169.3 53.0 15.0
VCO-1 4026.8 3142.4 1410.2 650.3 249.4
VCD-0 1435.9 501.4 175.8 59.8 18.0
VCD-1 4030.0 3306.2 1758.7 1126.5 633.2
VCR-g 1733.4 908.7 393.7 – –
NS 1817.1 1141.6 494.3 77.5 5.5
ST 1890.1 1293.3 1139.3 1096.8 1058.8
BGL 1458.1 534.2 171.4 49.1 –

Table 3: Partitioning time in seconds for different number

of partitions on the OGBN-Products dataset. Missing values

correspond to timeouts or crashes.

by the partition sizes. Vertex cut strategies, NS, and ST start to
show diminishing returns beyond 16 and 64 partitions. Also, some
partitioning methods, such as Random, Metis, and VCR-g tend to
see performance degradation with higher number of partitions (256
and 1024). Finally, BGL uses too much memory at high partition
counts and fails to complete. These slowdowns are largely due to
the increased batch processing and synchronization overheads of
training using more partitions and highlight the existence of an
optimal partition threshold for different techniques.

How does partitioning affect different GNN models? Partitioning
affects GraphSAGE and GCNmodels differently due to their distinct
computational and communication patterns. GraphSAGE generally
achieves lower epoch times compared to GCN across all partition-
ing methods and partition counts. This difference arises because
GraphSAGE samples a fixed number of neighbors at each layer,
limiting the growth of the computational graph and reducing com-
munication overhead. In contrast, GCN aggregates features from
all neighbors, leading to larger computational graphs and higher
sensitivity to partition boundaries. For example, at 16 partitions,
GraphSAGE consistently outperforms GCN across methods like
Random, Metis, and VCR-0, with epoch times that are 30-40% lower.
Despite this general difference, the scalability profiles of the two
models are largely similar, with both showing diminishing returns
beyond 64 partitions. However, at higher partition counts (e.g.,
256 and 1024), GCN experiences slightly more pronounced slow-
downs with vertex-cut methods such as VCR-1 and VCO-1 due to
its higher communication demands. Therefore, the choice of parti-
tioning strategy must be carefully aligned with the computational
and communication characteristics of the model being used.

Do deeper models benefit more significantly from partitioning? In
Figure 3, the duration of the training epochs increases consistently
with deeper GNN models. This increase is primarily due to elevated
communication requirements, as deeper layers require aggregation

features from more distant nodes, which increases the sensitivity
to partition boundaries. For instance, 1-hop halos in vertex-cut
partitioning methods often fail to improve performance, as they
cannot adequately address the need for non-local nodes with deeper
models. As a result, performance differences among partitioning
methods become more pronounced with increasing model depth.
For example, when increasing the number of partitions from 4 to
16, the 3-layer GCN achieves a 6-fold speedup, while the 4-layer
GCN sees a 10-fold speedup. These gains arise from the exponential
growth in neighborhood size required by deeper layers, which
partitioning effectively helps mitigate.

5.3 Impact of Partitioning on Model Accuracy

Effective partitioning not only impacts resource utilization and scal-
ability but also influences the quality of learned representations,
which affects model accuracy during training and evaluation. Intu-
itively, partitioning methods that preserve local connectivity and
minimize fragmentation should maintain higher accuracy, while
extreme partitioning or overly randomized strategies may degrade
performance by limiting access to relevant neighborhood informa-
tion. In this section, we empirically evaluate these effects.

Results Overview. Table 4 presents validation and test accuracy
for GraphSAGE and GCN models with varying depths (2 and 3
layers) trained on the OGBN-Products dataset using different parti-
tioning methods (Random, Metis) and partition counts (4 and 16).
In addition, Figure 4 visualizes the training accuracy of the 3-layer
GraphSAGE model. These results are sampled from the full set of
experiments and are representative of the overall trends observed.

Does advanced partitioning improve accuracy? As shown in Ta-
ble 4, the simple Random partitioning method often achieves accu-
racy comparable to or even better than more advanced methods,
such as Metis and vertex-cut methods, at moderate partition counts
(4 and 16). This trend is consistent across both GraphSAGE and
GCN models, regardless of depth. This result is counterintuitive, as
Random does not explicitly preserve local connectivity. However,
it suggests that advanced methods, while optimizing for minimal
edge cuts, may inadvertently fragment the graph in ways that dis-
rupt the training process, such as creating partitions that are too
small or unbalanced. In contrast, Random may preserve a sufficient
level of connectivity across partitions by distributing nodes more
uniformly, which can help maintain representation quality. These
findings show that complex partitioning strategies do not always
guarantee better accuracy and may even degrade performance.

How does the number of partitions affect accuracy? Figure 4 shows
that the training accuracy declines sharply as the number of parti-
tions increases to extreme levels, such as 256 and 1024. This drop
is particularly pronounced for methods like Random and VCR-
0, where accuracy falls by over 50% compared to lower partition
counts. The decline is primarily due to excessive fragmentation,
which reduces local connectivity and limits the model’s ability to
aggregate meaningful neighborhood information during training.
In contrast, advanced methods like Metis and VCO-1 exhibit more
gradual declines, suggesting that they better preserve connectivity
at higher partition counts.



GRADES-NDA ’25, June 22–27, 2025, Berlin, Germany Chongyang Xu and Laurent Bindschaedler

1 4 16 64 256 1024
Number of Partitions

10 2

10 1

100

101

102

Ep
oc

h 
Ti

m
e 

(s
)

GraphSage-2 on OGBN-Products
Partition Methods

Random-0
Metis-0
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
NS
ST
BGL

1 4 16 64 256 1024
Number of Partitions

10 2

10 1

100

101

102

Ep
oc

h 
Ti

m
e 

(s
)

GCN-2 on OGBN-Products
Partition Methods

Random-0
Metis-0
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
NS
ST
BGL

1 4 16 64 256 1024
Number of Partitions

10 2

10 1

100

101

102

Ep
oc

h 
Ti

m
e 

(s
)

GraphSage-3 on OGBN-Products
Partition Methods

Random-0
Metis-0
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
NS
ST
BGL

1 4 16 64 256 1024
Number of Partitions

10 2

10 1

100

101

102

Ep
oc

h 
Ti

m
e 

(s
)

GCN-3 on OGBN-Products
Partition Methods

Random-0
Metis-0
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
NS
ST
BGL

1 4 16 64 256 1024
Number of Partitions

10 2

10 1

100

101

102

103

Ep
oc

h 
Ti

m
e 

(s
)

GraphSage-4 on OGBN-Products
Partition Methods

Random-0
Metis-0
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
NS
ST
BGL

1 4 16 64 256 1024
Number of Partitions

10 2

10 1

100

101

102

103

Ep
oc

h 
Ti

m
e 

(s
)

GCN-4 on OGBN-Products
Partition Methods

Random-0
Metis-0
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
ST
NS
BGL

Figure 3: Epoch time comparison between GraphSAGE and GCN models on OGBN-Products with different numbers of layers.

Do certain partitioning methods perform better for specific models?
The effectiveness of partitioning methods varies significantly be-
tween GraphSAGE and GCN, as shown in Table 4. For GraphSAGE,
advanced methods like Metis consistently achieve high accuracy,
with test accuracy reaching 0.773 for the 2-layer model at 16 par-
titions. In contrast, Metis performs poorly for GCN, where test
accuracy drops to 0.573 under the same configuration. This dispar-
ity likely stems from the differences in how the two models ag-
gregate neighborhood information. GraphSAGE’s sampling-based
aggregation is less sensitive to partition boundaries, allowing it to
benefit from Metis’s balanced partitions. On the other hand, GCN’s
full-neighborhood aggregation makes it more vulnerable to the
fragmentation introduced by advanced methods, leading to better
accuracy with simpler methods like Random. These results suggest
that the choice of partitioning method should be tailored to the
model architecture to maximize accuracy.

How does partitioning affect validation vs. test accuracy? Parti-
tioning methods can lead to noticeable gaps between validation and
test accuracy, particularly for GCN, as shown in Table 4. For exam-
ple, at 16 partitions, GCN-2 achieves a validation accuracy of 0.861

with Metis but only a test accuracy of 0.573, indicating potential
overfitting. This trend is less pronounced for GraphSAGE, where
validation and test accuracy remain closely aligned across parti-
tioning methods and partition counts. For instance, GraphSAGE-2
achieves a validation accuracy of 0.919 and a test accuracy of 0.773
with Metis at 16 partitions, showing better generalization. These
results suggest that advanced partitioning methods like Metis and
VCO may inadvertently encourage overfitting in GCN by creating
partitions that optimize training performance but fail to generalize
to unseen data. In contrast, GraphSAGE appears more robust to
such effects, likely due to its sampling-based aggregation approach.

5.4 Partitioning Trade-offs Between Load

Balancing and Communication Overhead

Partitioning methods must strike a delicate balance between evenly
distributing computational loads and minimizing inter-partition
communication by reducing edge cuts. Ideally, fewer edge cuts re-
duce communication overhead, enhancing performance, while load
balancing ensures efficient utilization of computational resources.



Everything You Wanted to Know About Graph Neural Network Partitioning (But Were Afraid to Ask) GRADES-NDA ’25, June 22–27, 2025, Berlin, Germany

Model Method 4 Partitions 16 Partitions
Validation Test Validation Test

Sage-2 Random 0.917 0.770 0.920 0.771
Metis 0.918 0.773 0.919 0.773

Sage-3 Random 0.900 0.725 0.921 0.773
Metis 0.892 0.735 0.919 0.777

GCN-2 Random 0.913 0.744 0.915 0.752
Metis 0.888 0.654 0.861 0.573

GCN-3 Random 0.863 0.704 0.895 0.765
Metis 0.887 0.696 0.893 0.690

Table 4: Validation and test accuracy for different models,

depths, partitioning methods, and number of partitions.

1 4 16 64 256 1024
Number of Partitions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

Partition Methods
Random-0
Metis-0
VCR-0
VCR-1
VCO-0
VCO-1
VCD-0
VCD-1
VCR-g
NS
ST
BGL

Figure 4: Train accuracy of GraphSAGE-3 on OGBN-Products.

Negative bars indicate an out-of-memory error.

However, achieving this balance is challenging, as advanced meth-
ods that minimize edge cuts often introduce significant load imbal-
ance. In this section, we explore this trade-off.

Results Overview. Table 5 compares the average partition sizes
and their standard deviations for Random and Metis partitioning
methods across different numbers of partitions for the OGBN-
Products and OGBN-Papers datasets.

Does partitioning-induced load imbalance impact performance?
As shown in Table 5, simpler methods like Random-0 often achieve
better load balancing compared to advanced methods like Metis. For
example, at 16 partitions on the OGBN-Products dataset, Random
produces partitions with an average size of 82.66 MB and a standard
deviation of only 0.38 MB, while Metis results in partitions with an
average size of 238.60 MB and a much higher standard deviation of
7.30 MB. This imbalance becomes even more pronounced for larger
datasets like OGBN-Papers, where Metis produces partitions with
a standard deviation over 400 MB at 16 partitions. The consistent
partition sizes produced by Random ensure better load distribution,
which can lead to improved computational efficiency, particularly
as the number of partitions increases. These results highlight that
simpler methods may outperform more sophisticated strategies in
scenarios where load balancing is critical.

How does load imbalance affect the benefits of minimizing edge
cuts? While minimizing edge cuts generally reduces communica-
tion overhead, the resulting load imbalance can negate these bene-
fits by introducing computational inefficiencies. For instance, Metis
achieves significantly fewer edge cuts compared to Random, but its

high partition size variance leads to uneven workloads across parti-
tions. This imbalance can slow down training, as the computational
bottleneck is determined by the largest partition. In extreme cases,
the overhead from load imbalance can outweigh the performance
gains achieved through reduced communication. These findings
emphasize that minimizing edge cuts alone is insufficient for opti-
mal performance; partitioning methods must also prioritize load
balancing to fully realize their benefits.

Dataset #Partition Random-0 Metis-0

OGBN-Products

16 82.66 ± 0.38 238.60 ± 7.30
64 18.40 ± 0.10 55.37 ± 4.89
256 4.46 ± 0.04 12.48 ± 1.23
1024 1.11 ± 0.02 2.65 ± 0.37

OGBN-Papers

16 4162.94 ± 1.97 5979.11 ± 436.14
64 1011.15 ± 0.74 1428.69 ± 174.46
256 250.94 ± 0.39 338.27 ± 53.14
1024 62.62 ± 0.20 79.05 ± 21.07

Table 5: Mean partition size and standard deviation for dif-

ferent partition counts, strategies, and datasets.

6 Surprising Findings

Several non-obvious findings emerge from our experiments. These
insights provide a deeper understanding of the interplay between
partitioning strategies, memory overhead, scalability, and model
accuracy. In the following, we recall, summarize, and discuss four
key observations from our evaluation results.

6.1 Random Partitioning Often Outperforms

Advanced Approaches

Although advanced partitioning methods (e.g., Metis and vertex-cut
strategies) are designed to minimize edge cuts, our results indicate
that, in many partitioning conditions, the simple Random partition-
ing scheme can yield superior overall performance. This outcome
is largely due to Random partitioning’s ability to consistently pro-
duce well-balanced partition sizes, which in turn minimizes load
imbalance. In contrast, sophisticated methods may lower commu-
nication costs but increase load imbalance, leading to increased
synchronization overhead that ultimately degrades performance.

6.2 1-Hop Expansions (Halo Nodes) Induce

Severe Memory Overhead

An unexpected observation is the dramatic increase in memory
usage when incorporating 1-hop expansions in vertex-cut methods
(e.g., VCR-1, VCO-1, and VCD-1). The addition of halo nodes, which
are necessary to maintain boundary connectivity, causes extensive
replication of node features. This issue is worsened by the power-
law degree distribution nature of many real-world graphs, causing
popular vertices to be replicated in every partition. This replication
often leads to out-of-memory (OOM) errors on larger datasets such
as OGBN-Papers, revealing a critical trade-off between enhanced
local connectivity and memory utilization. Our evaluation shows
that in many cases the use of halo nodes is unjustified.



GRADES-NDA ’25, June 22–27, 2025, Berlin, Germany Chongyang Xu and Laurent Bindschaedler

6.3 Deeper GNN Architectures Amplify

Partitioning Sensitivity

Our experiments show that the benefits of partitioning become
markedly more pronounced as the depth of the GNN increases.
For example, while a 3-layer GCN achieves approximately a 6-fold
reduction in epoch time when increasing partitions from 4 to 16,
a 4-layer GCN attains roughly a 10-fold speedup. This amplified
benefit is attributed to the exponential growth of the receptive field
in deeper networks, which greatly increases the communication
overhead. Effective partitioning mitigates this overhead, although
deeper architectures are also more susceptible to memory issues
under aggressive partitioning schemes.

6.4 Excessive Partitioning Leads to a Sharp

Deterioration in Accuracy

While increasing the number of partitions reduces the size of each
partition and enhances computational efficiency, there exists a crit-
ical threshold beyond which the accuracy of the model deteriorates
sharply. For instance, at high partition counts (e.g., 1024 partitions),
the fragmentation of the graph impairs the model’s ability to ef-
fectively aggregate local neighborhood information, resulting in
a notable drop in training, validation, and test accuracy. This ob-
servation highlights the delicate balance between computational
speed and the quality of learned representations.

7 The Seven Principles of GNN Partitioning

In this section, we distill our learnings and outline seven principles
that guide the effective implementation of GNN training at scale.

Principle I: Scale-Appropriate Strategy

Choose partitioning strategy based on scale:
• For small partition counts (up to 16 partitions), use simple
random partitioning.

• For large-scale deployments (64+ partitions), consider vertex-
cut or other approaches.

• Explore advanced methods only when simpler approaches
prove insufficient.

Principle II: Memory Management

Manage memory resources efficiently:
• Do not use halos to reduce memory consumption.
• Pay special attention to high-degree node replication in
vertex-cut methods.

• Let graph degree distribution inform strategy selection.

Principle III: Architectural Alignment

Match partitioning strategy to model architecture:
• For GraphSAGE, leverage advanced methods like Metis.
• For GCN, prefer simpler random approaches.
• For deep models, avoid excessive partitioning.

Principle IV: Performance-Accuracy

Balance

Maintain equilibrium between performance and accuracy:

• Check advanced schemes for overfitting and imbalance risks.
• Consider random partitioning as a strong baseline.

Principle V: Full-Graph Consideration

Consider full-graph training approaches when feasible:
• Use entire graph when resources permit.
• Recognize when mini-batch training becomes necessary.
• Balance ideal approaches against practical constraints.

Principle VI: Partition Count Optimization

Optimize partition count carefully:
• Target moderate partition counts if possible.
• Monitor partition size variance.
• Account for communication overhead.

Principle VII: Load Distribution

Ensure balanced workload distribution:
• Watch for imbalance in advanced methods.
• Use simpler methods when balance is critical.
• Monitor partition size variance consistently.

8 Conclusion and Future Directions

Key Findings and Insights. This survey has highlighted several
crucial insights into GNN partitioning. Simple random partitioning
can often achieve comparable or superior accuracy to more complex
methods, particularly for GCN models, while also offering better
load balancing. Memory overhead from halo expansions, especially
in vertex-cut methods, can severely limit scalability. The choice
of partitioning strategy should be carefully tailored to the model
architecture, dataset size, and available resources, with a focus
on balancing communication overhead, load distribution, and the
potential for overfitting. These findings establish a solid foundation
for optimizing distributed GNN training.

Future Research Directions. Building on these findings, several
challenges remain open for future research. Addressing these chal-
lenges will be critical to further advancing the scalability and effi-
ciency of GNN partitioning strategies.

• Improved depth-aware partitioning heuristics: Current
approaches often inadequately address the varying compu-
tational requirements across different layers of deep GNNs.
Developing layer-aware partitioning strategies could sub-
stantially improve performance.

• Dynamic repartitioning: Switching partitioning schemes
during training may prove worthwhile in many cases to
maximize model accuracy while limiting the performance
downsides of any one partitioning method. Unfortuantely,
the potential of dynamic partition switching is limited by the
lack of intelligent scheduling mechanisms. Determining op-
timal transition criteria while minimizing overhead presents
a key research opportunity.

• Extreme-scale memory management: As graphs grow,
novel partitioning and memory management approaches are
needed to overcome memory bottlenecks while maintaining
computational performance and communication efficiency.



Everything You Wanted to Know About Graph Neural Network Partitioning (But Were Afraid to Ask) GRADES-NDA ’25, June 22–27, 2025, Berlin, Germany

References

[1] 2023. https://ogb.stanford.edu/docs/nodeprop/#ogbn-products.
[2] 2023. https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M.
[3] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,

Gertrude Liu, Jeremy BRHayter, Richard Vickers, Charles Roberts, Jian Tang, et al.
2021. Utilizing graph machine learning within drug discovery and development.
Briefings in bioinformatics 22, 6 (2021), bbab159.

[4] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett (Eds.). 1024–1034. https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

[5] Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam
Lerer, and Alexander Rives. 2022. Learning inverse folding from millions of
predicted structures. In International Conference on Machine Learning. PMLR,
8946–8970.

[6] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc.
In Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX,
USA, March 2-4, 2020, Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne
Sze (Eds.). mlsys.org. https://proceedings.mlsys.org/book/300.pdf

[7] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[8] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. CoRR abs/1609.02907 (2016). arXiv:1609.02907
http://arxiv.org/abs/1609.02907

[9] Edward Elson Kosasih and Alexandra Brintrup. 2022. A machine learning ap-
proach for predicting hidden links in supply chain with graph neural networks.
International Journal of Production Research 60, 17 (2022), 5380–5393.

[10] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-
munity interaction and conflict on the web. In Proceedings of the 2018 world wide
web conference. 933–943.

[11] Tianfeng Liu, Yangrui Chen, Dan Li, ChuanWu, Yibo Zhu, Jun He, Yanghua Peng,
Hongzheng Chen, Hongzhi Chen, and ChuanxiongGuo. 2023. BGL: GPU-Efficient
GNN Training by Optimizing Graph Data I/O and Preprocessing. In 20th USENIX

Symposium on Networked Systems Design and Implementation, NSDI 2023, Boston,
MA, April 17-19, 2023, Mahesh Balakrishnan and Manya Ghobadi (Eds.). USENIX
Association, 103–118. https://www.usenix.org/conference/nsdi23/presentation/
liu-tianfeng

[12] Zhaorui Ma, Shicheng Zhang, Na Li, Tianao Li, Xinhao Hu, Hao Feng, Qinglei
Zhou, Fenlin Liu, Xiaowen Quan, Hongjian Wang, Guangwu Hu, Shubo Zhang,
Yaqi Zhai, Shuaibin Chen, and Shuaiwei Zhang. 2023. GraphNEI: A GNN-based
network entity identification method for IP geolocation. Comput. Networks 235
(2023), 109946. doi:10.1016/J.COMNET.2023.109946

[13] Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang
Wang. 2020. Knowing your fate: Friendship, action and temporal explanations
for user engagement prediction on social apps. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining. 2269–
2279.

[14] Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep
learning on graphs. In ICLR workshop on representation learning on graphs and
manifolds.

[15] Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and
Ge Yu. 2022. NeutronStar: Distributed GNN Training with Hybrid Dependency
Management. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and
Amr El Abbadi (Eds.). ACM, 1301–1315. doi:10.1145/3514221.3526134

[16] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed Power-law
Graph Computing: Theoretical and Empirical Analysis. In Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, Zoubin
Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger (Eds.). 1673–1681. https://proceedings.neurips.cc/paper/2014/hash/
67d16d00201083a2b118dd5128dd6f59-Abstract.html

[17] Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li. 2017.
Graph Edge Partitioning via Neighborhood Heuristic. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, August 13 - 17, 2017. ACM, 605–614. doi:10.1145/3097983.
3098033

[18] Kai Zhao, Yukun Zheng, Tao Zhuang, Xiang Li, and Xiaoyi Zeng. 2022. Joint
learning of e-commerce search and recommendation with a unified graph neural
network. In Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining. 1461–1469.

https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.mlsys.org/book/300.pdf
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://www.usenix.org/conference/nsdi23/presentation/liu-tianfeng
https://www.usenix.org/conference/nsdi23/presentation/liu-tianfeng
https://doi.org/10.1016/J.COMNET.2023.109946
https://doi.org/10.1145/3514221.3526134
https://proceedings.neurips.cc/paper/2014/hash/67d16d00201083a2b118dd5128dd6f59-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/67d16d00201083a2b118dd5128dd6f59-Abstract.html
https://doi.org/10.1145/3097983.3098033
https://doi.org/10.1145/3097983.3098033

	Abstract
	1 Introduction
	2 Background
	2.1 GNN Fundamentals
	2.2 Partitioning Basics
	2.3 Scope of This Survey

	3 Partitioning Strategies
	3.1 Edge-Cut Methods
	3.2 Vertex-Cut Methods
	3.3 Other Approaches

	4 Experimental Setup
	5 Evaluation and Observations
	5.1 Partition Sizes and Resource Utilization
	5.2 Impact of Partitioning on Scalability
	5.3 Impact of Partitioning on Model Accuracy
	5.4 Partitioning Trade-offs Between Load Balancing and Communication Overhead

	6 Surprising Findings
	6.1 Random Partitioning Often Outperforms Advanced Approaches
	6.2 1-Hop Expansions (Halo Nodes) Induce Severe Memory Overhead
	6.3 Deeper GNN Architectures Amplify Partitioning Sensitivity
	6.4 Excessive Partitioning Leads to a Sharp Deterioration in Accuracy

	7 The Seven Principles of GNN Partitioning
	8 Conclusion and Future Directions
	References

